scholarly journals Automated analysis technology for the transport superstructure heat transfer coeffi cient using a remote server

2019 ◽  
Vol 78 (4) ◽  
pp. 227-232
Author(s):  
A. A. Golubin ◽  
T. I. Nabatchikova ◽  
S. N. Naumenko

The main parameter determined in heat engineering tests of heat insulated cars superstructures or the locomotive operator’s cabs is the heat transfer coeffi cient К. The study introduces automated analysis technology for the heat transfer coeffi cient К of enclosure structures of the heat insulated transport means using a remote server. The underlying method provides coeffi cient K of the heat insulated transport means without additional work and time loss for complicated calculations. Personnel of test laboratories involved in heat engineering tests of vehicles possess tools for remotely calculating К, from any point in the world with internet access. To obtain К three controlled parameters measured during the heat engineering tests for 5.5 h including: the difference of the inside and outside temperature of the test object superstructure, total power of the electric heaters and geometric area of the heat transfer surface are sent to the server, after which the user promptly receives the calculated К. The economic effect of introducing the proposed technology for vehicle manufacture is the absence of required tests conducted at the test center; for an operating company — a signifi cant reduction of the idle time of the vehicle at the test center directly affects the loss of profi t. The proposed technology expands the area of operation of the test centers, while calculated К values are offi cially input into the data sheet of the vehicle.

Author(s):  
Peter Rez

Most of the energy used by buildings goes into heating and cooling. For small buildings, such as houses, heat transfer by conduction through the sides is as much as, if not greater than, the heat transfer from air exchanges with the outside. For large buildings, such as offices and factories, the greater volume-to-surface ratio means that air exchanges are more significant. Lights, people and equipment can make significant contributions. Since the energy used depends on the difference in temperature between the inside and the outside, local climate is the most important factor that determines energy use. If heating is required, it is usually more efficient to use a heat pump than to directly burn a fossil fuel. Using diffuse daylight is always more energy efficient than lighting up a room with artificial lights, although this will set a limit on the size of buildings.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3955
Author(s):  
Yonghan Ahn ◽  
Hanbyeol Jang ◽  
Junghyon Mun

The purpose of this study is to compare the load calculation results by a model using the air changes per hour (ACH) method and a model using an airflow network (AFN) and to ascertain what causes the difference between the two models. In the basic case study, the difference in the heat transfer distribution of the model in the interior space was investigated. The most significant difference between the two models is the heat transfer that results from infiltration. Parameter analysis was performed to investigate the relationship between the difference and the environmental variables. The result shows that the greater the difference is between the air temperature inside the balcony and the outdoor air temperature, and the greater the air flows from the balcony to the residential area, and the greater the heating and cooling load difference occurs. The analysis using the actual weather files of five domestic cities in South Korea rather than a virtual case shows that the differences are not so obvious when the wind blows at a constant speed throughout the year, but are dominant when the wind does not blow during the night and is stronger alongside the occurrence of sunlight during the day.


Author(s):  
D. Jackson ◽  
P. Ireland ◽  
B. Cheong

Progress in the computing power available for CFD predictions now means that full geometry, 3 dimensional predictions are now routinely used in internal cooling system design. This paper reports recent work at Rolls-Royce which has compared the flow and htc predictions in a modern HP turbine cooling system to experiments. The triple pass cooling system includes film cooling vents and inclined ribs. The high resolution heat transfer experiments show that different cooling performance features are predicted with different levels of fidelity by the CFD. The research also revealed the sensitivity of the prediction to accurate modelling of the film cooling hole discharge coefficients and a detailed comparison of the authors’ computer predictions to data available in the literature is reported. Mixed bulk temperature is frequently used in the determination of heat transfer coefficient from experimental data. The current CFD data is used to compare the mixed bulk temperature to the duct centreline temperature. The latter is measured experimentally and the effect of the difference between mixed bulk and centreline temperature is considered in detail.


Author(s):  
Nan Li ◽  
Dan Wu

Under the dual background of underemployment and health inequality, this paper empirically analyzes the impact of education level on underemployed workers’ health based on CLDS2016 data. The results show that underemployment is significantly related to the decline of self-rated health, increased depression tendency, and morbidity in a certain period. The results indicate that underemployment can significantly reduce the health level of workers in the low education level group and the high education level group. However, it has no significant impact on workers’ health in the middle education level group; even if we change the measurement method of indicators and consider endogeneity, the research conclusion is still robust. Moreover, this kind of health inequality mainly comes from the difference in economic effect and leisure effect of underemployment to workers with different educational levels. This paper provides empirical support for increasing the labor protection mechanism of underemployed people and reducing the health inequality caused by educational level differences.


2021 ◽  
Author(s):  
Mahyar Pourghasemi ◽  
Nima Fathi

Abstract 3-D numerical simulations are performed to investigate liquid sodium (Na) flow and the heat transfer within miniature heat sinks with different geometries and hydraulic diameters of less than 5 mm. Two different straight small-scale heat sinks with rectangular and triangular cross-sections are studied in the laminar flow with the Reynolds number up to 1900. The local and average Nusselt numbers are obtained and compared against eachother. At the same surface area to volume ratio, rectangular minichannel heat sink leads to almost 280% higher convective heat transfer rate in comparison with triangular heat sink. It is observed that the difference between thermal efficiencies of rectangular and triangular minichannel heat sinks was independent of flow Reynolds number.


2021 ◽  
Vol 11 (1) ◽  
pp. 46-55
Author(s):  
Arman B. KOSTUGANOV ◽  
Vitaly V. DEMIDOCHKIN

This article discusses the issue of determining the value the average wall temperature of the plate of a recuperative heat exchanger type “air-to-air” with a corrugated mesh insert based on the results processing the data of a physical experiment to determine the thermohydraulic characteristics such heat exchange surfaces. It has been established that the temperature fi eld of heat exchange surfaces of this type is nonuniform, depends on the conditions of heat exchange and hydraulic regimes of air fl ow. Therefore, the adoption of the arithmetic means value of the measured surface temperatures as the calculated average temperature of the heat exchanger wall entails signifi cant errors in the subsequent processing of experimental data and fi nal the values of the heat transfer coeffi cients, the values the Nusselt criterion and the criterion equations of heat transfer. It is proposed to determine the average value the wall temperature of the heat exchanger based on the results of measurements the wall’s temperatures, the estimate of the coordinates the center of distribution the results of measurements the wall temperatures, the equations of heat balance and heat transfer.


2021 ◽  
Author(s):  
Antonio Tannas

In order to replace hazardous molten lead baths in the heat treatment of carbon steel wire with environmentally friendly fluidized bed furnaces a better understanding is needed of their heat transfer rates. There has been considerable work done in examining heat transfer rates to large cylinders immersed in fluidized beds, and some on wire sized ones as well, but all previous studies have been conducted on static cylinders. In order to gain a deeper understanding of heat transfer rates to a moving wire immersed in a fluidized bed furnace an apparatus has been constructed to move a wire through a fluidized bed. The heat transfer rates were calculated using the difference in inlet and outlet temperatures, wire speed and the bed temperature. As predicted, correlations for static wire were found to under-predict heat transfer rates at higher wire speeds, so a new correlation was developed by modifying an existing one.


2019 ◽  
Author(s):  
Evelien H.S. Schut ◽  
Alejandra Alonso ◽  
Steven Smits ◽  
Mehdi Khamassi ◽  
Anumita Samanta ◽  
...  

AbstractKleefstra syndrome is a disorder caused by a mutation in the EHMT1 gene characterized in humans by general developmental delay, mild to severe intellectual disability and autism. Here, we characterized semantic- and episodic-like memory in the Ehmt1+/- mouse model using the Object Space Task. We combined conventional behavioral analysis with automated analysis by deep-learning networks, a session-based computational learning model and a trial-based classifier. Ehmt1+/- mice showed more anxiety-like features and generally explored objects less, but the difference decreased over time. Interestingly, when analyzing memory-specific exploration, Ehmt1+/- show increased expression of semantic-like memory, but a deficit in episodic-like memory. A similar dissociation of semantic and episodic memory performance has been previously reported in humans with autism. Using our automatic classifier to differentiate between genotypes, we found that semantic-like memory features are better suited for classification than general exploration differences. Thus, detailed behavioral classification with the Object Space Task produced a more detailed behavioral phenotype of the Ehmt1+/- mouse model.One Sentence SummaryEhmt1+/- mice show decreased exploration and episodic-like memory but increased semantic-like memory In the Object Space Task. (143 of 150)


1999 ◽  
Vol 121 (5) ◽  
pp. 514-520 ◽  
Author(s):  
R. B. Roemer

Previous models of countercurrent blood vessel heat transfer have used one of two, different, equally valid but previously unreconciled formulations, based either on: (1) the difference between the arterial and venous vessels’ average wall temperatures, or (2) the difference between those vessels’ blood bulk fluid temperatures. This paper shows that these two formulations are only equivalent when the four, previously undefined, “convective heat transfer coefficients” that are used in the bulk temperature difference formulation (two coefficients each for the artery and vein) have very specific, problem-dependent relationships to the standard convective heat transfer coefficients. (The average wall temperature formulation uses those standard coefficients correctly.) The correct values of these bulk temperature difference formulation “convective heat transfer coefficients” are shown to be either: (1) specific functions of (a) the tissue conduction resistances, (b) the standard convective heat transfer coefficients, and (c) the independently specified bulk arterial, bulk venous and tissue temperatures, or (2) arbitrary, user defined values. Thus, they are generally not equivalent to the standard convective heat transfer coefficients that are regularly used, and must change values depending on the blood and tissue temperatures. This dependence can significantly limit the convenience and usefulness of the bulk temperature difference formulations.


1988 ◽  
Vol 110 (3) ◽  
pp. 254-256 ◽  
Author(s):  
E. H. Wissler

Presented in this paper is a solution for countercurrent heat exchange between two parallel vessels embedded in an infinite medium with a linear temperature gradient along the axes of the vessels. The velocity profile within the vessel is assumed to be parabolic. This solution describes the temperature field within the vessels, as well as in the tissue, and establishes that the intravessel temperature is not uniform, as is generally assumed to be the case. An explicit expression for the intervessel thermal resistance based on the difference between cup-mixed mean temperatures is derived.


Sign in / Sign up

Export Citation Format

Share Document