The regularities of soil distribution on the southern taiga–forest-steppe interface in Western Siberia.

2021 ◽  
Vol 0 (6) ◽  
pp. 39-44
Author(s):  
Lidiya Inisheva ◽  
Leh Shaydak ◽  
Boris Babikov

The effective of forest reclamation in oligotrophic and eutrophic swamps in the southern taiga and forest-steppe zones of Western Siberia are described. The state of the hydrological and gas regime of peat deposits is analyzed. It is concluded that forest reclamation 60 years ago on oligotrophic and eutrophic swamps has little effect on the hydrological and gas regime of the reclaimed territory at this moment. These regimes are approaching to their natural state, which indicates that the area is re-waterlogged in the absence of operation of the drainage system.


2021 ◽  
Vol 38 ◽  
pp. 00085
Author(s):  
Yury V. Naumenko

The data on the species diversity of representatives of the genus Teilingia Bourrelly are summarized. from the water bodies of Western Siberia, their distribution by zones and subzones. To date, 4 species and intraspecific taxa from the order Desmidiales are known for the region. Representatives of this family are found mosaically throughout the entire territory of Western Siberia. The largest number of taxa (3) was found in the middle taiga, in the tundra – two species. No species were found in the Irtysh floodplain, forest tundra, northern taiga, forest-steppe and steppe zones. In watercourses, including the Ob and Irtysh, as well as in lakes of different types, 3 taxa were identified, respectively. One species was found in swamps and in temporary reservoirs.


2021 ◽  
Vol 928 (1) ◽  
pp. 012014
Author(s):  
E K Vishnyakova

Abstract On the base of experiments there were recorded the greatest mass losses of Sphagnum fuscum samples flat palsa mires in the first year of experiment, in the following years decay rate decreased significantly (from 24 % to 16 %). On middle taiga bogs there was observed decay rate increasing over the third year while on southern taiga bogs Sphagnum fuscum was decomposed almost evenly over three years. On ridges of ridge-hollow complex of middle taiga and southern taiga mass losses under destruction were greater than those in ryams. The most dynamic decomposition was recorded for forest-steppe ryam with decay mass losses over three years of 56% average.


2021 ◽  
Vol 29 (4) ◽  
pp. 393-398
Author(s):  
V. B. Ilyashenko ◽  
E. M. Luchnikova ◽  
A. V. Kovalevsky

The paper is devoted to the dynamics of the water vole population in the conditions of total deforestation of valley forests and their subsequent restoration. We analyzed the relative population of small mammals in the typical biotopes in the Tom River basin (Western Siberia) on the border of the forest-steppe and taiga zones. From 1978 to 2019, 1,139 water voles Arvicola amphibius (Linnaeus, 1758) (synonym of A. terrestris) were caught with 50-meter trapping grooves; for 788 individuals we assessed the condition of non-metric features (phenes) of the skull. It was found that changes in the population level are non-cyclical, while against the background of a generally low occurrence of the species in the region, the population level increased tenfold in some years. It was shown that such episodic population surges can significantly impact the structure of the community of small mammals. In the valley of the Tom River, the water vole prefers inhabit wet meadows and ecotone areas between the meadow and the dark coniferous taiga forest. During the years of population surges, the water vole intensely occupies new nesting sites due to the dispersal activity of young animals but at the same time retains the original biotopic preferences. Dispersal of the species takes place in waterlogged wetlands. Most of the animals caught during the peak of their numbers were young animals of late broods born from overwintered individuals. The conducted phenetic analysis revealed the heterogeneity of young animals during the population surge, which allowed us to assume the participation of several populations in the formation of the peak. In the final surge year, the surge was characterized by an extremely low percentage of participation in the breeding of young females and the appearance of a large number of weakened animals, which led to crisis in the species population and the disappearance of the water vole from the captures. The research shows that one cannot predict the success of this process at the current stage; therefore, after flooding, it is necessary to continue monitoring.


Author(s):  
N. I. Kashevarov ◽  
R. I. Polyudina ◽  
I. N. Kazarinova ◽  
D. А. Potapov

A new cultivar of smooth bromegrass (Bromopsis inermis Leyss) Flagman was developed by methods of mass selection and polycross. Breeding and wild forms of various ecological and geographical origins are used as an initial material. The authors of the cultivar: Kazarinova I.N., Polyudina R.I., Straub A.A., Gomasco S.K. Studies were conducted on the Central experimental base of the Siberian research Institute of fodder crops of the Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, located in the forest-steppe zone of Western Siberia (Novosibirsk region, Novosibirsk district, Krasnoobsk). The cultivar is mid-ripening: the period from the beginning of spring aftergrowing to mowing ripeness is 63-75 days and to full maturing of seeds is 95-111 days. The yield of dry matter is 8.3 t/ha, which exceeds the standard by 8%, seed yield - 0.62 t/ha, higher than the standard by 28%. The dry matter yield of the cultivar Flagman for the fourth year of use exceeded the standard by 23% and reached to 11.4 t/ha. The 1000 seeds weight is 3.0-3.4 g. The plant height is 90-140 cm. Tilling capacity is up to 40 stems per tuft. Foliage varies from 32 to 50% depending on the age of the grass and environment conditions. The resistance of the cultivar to brown rust and helminthosporiosis is higher than of the standard. The copyright certificate No. 71916 and patent No. 9653 were received.


Author(s):  
V. N. Suleimanova ◽  
N. Yu. Egorova

The object of our research was one of the most common orchids in the world – Cypripedium calceolus L. As a rare species, it is listed in the Red book of the Russian Federation (3 category of rarity) [8], the Kirov region (3 category of rarity) [9], as well as in the Red books of 59 regions of the Russian Federation [2]. Limiting factors in the Kirov region are the violation of habitats as a result of anthropogenic impacts – deforestation, recreation, collection for bouquets, digging, reducing the number of species. Studies on the study of C. calceolus in the Kirov region are isolated [10–12]. The purpose of this work is to identify phytocenotic parameters and environmental conditions of C. calceolus habitats within the southern taiga fragment of the range. Studies of ecological and cenotic conditions of C. calceolus habitats were conducted in southern taiga forest ecosystems within the Kirov region (Slobodskaya, Afanasyevsky districts) (See table 1) in the period from 2012 to 2019. The studied habitats of C. calceolus are confined to non-morally-boreal-small-grass and grass spruce forests (Melico nutantis-Piceetum abietis subass. typicum, Maianthemo-Piceetum subass. typicum var. typical) (See fig. 1), pine trees with fir and spruce of various grasses (Melico nutantis-Pinetum sylvestris var. Lathyrus vernus). The growth of C. calceolus on the technogenically disturbed substrate of an old spent limestone quarry overgrown with coniferous rocks and various grasses was also noted. All the studied biotopes are characterized by a large constancy of non-moral species with not significant coverage of mosses. The stand of spruce forest types is dominated by Picea abies, pine-Pinus sylvestris. Abies sibirica occurs as an impurity. The undergrowth layer has a diverse species composition: Sorbus aucuparia, Frangula alnus, Lonicera xylosteum, Yuniperus communis, Daphne mezereum. In this tier of most studied phytocenoses there is a Atragene sibirica. The grass-shrub layer is also very diverse, which determines the high specificity of these communities. In addition to species of boreal small grass (Maianthemum bifolium, Orthilia secunda, Luzula pilosa, Rubus saxatilis), the presence of non – morals is characteristic-Lathyrus vernus, Melica nutans, Stellaria holostea, Asarum europaeum. Moss-lichen layer is fragmentary (covering up to 45 %), Pleurozium schreberi and Hylocomium splendens act as sodominants. Phyto-indication of the studied C. calceolus habitats according to ten ecological scales of D. N. Tsyganov (See table 2, Fig. 2) showed that in relation to the complex of all environmental factors, the studied species is mesovalent (MV) (It total = 0.54) and has an average level of lability in relation to the studied environmental factors. In relation to the complex of all environmental factors, C. calceolus is a mesobiont species. On a scale of soil acidity, the species is semistarvation at termokhimicheskie and apolitically scale and dial illumination-shading – metavalent on the scale of the wealth of the soil nitrogen – hemimillennial at createmotions scale and the scale of continentality of the climate avivamento. Only on the scale of soil moisture and the scale of soil salt regime, C. calceolus is stenovalent, which indicates a very limited range of possible habitats for this factor. The species, in the studied habitats, realizes from 4.61 to 23.84 % of its potential according to the studied factors. For C. calceolus, the results obtained allow us to extend the scale of soil acidity by 0.75 degrees to the right. According to the other scales, the values of the ecological space of the studied CP are placed in the ranges given by D. N. Tsyganov for this type Edaphic conditions of C. calceolus on the scale of soil moisture correspond to regimes from dry-saline to wet-forest-saline; on the factor of soil salt regime-poor soils; soil acidity – acidic-slightly acidic soils; soil richness in nitrogen – nitrogen – poor soils; moisture variability-soils with relatively stable and poorly variable moisture.


2018 ◽  
Vol 1 (72) ◽  
pp. 161-165
Author(s):  
Nina Kazydub ◽  
◽  
Svetlana Kuzmina ◽  
Evgeniy Freilikh ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document