scholarly journals Bacteria-based self-healing concrete: evaluation of full scale demonstrator projects

2020 ◽  
Vol 4 ◽  
pp. 138-144
Author(s):  
Renée Mors ◽  
Henk M. Jonkers

Bacteria-based self-healing concrete is an innovative concrete that contains a self-healing agent that provides the material with enhanced autonomous crack-sealing performance. A specific type of this concrete, based on a healing agent composed of bacterial spores and lactate as carbon source, has been developed and applied by the Delft University of Technology for over ten years. Under laboratory conditions it was proven that, depending on the dosage of healing agent, self-healing of cracks up to 0.8 mm widths occurs. As such the material potentially allows reduction of steel reinforcement used for crack width limitation in watertight constructions. Application of  self-healing concrete would therefore not only result in a reduction of costs but also in improvement of environmental performance (lower CO2 footprint) and ease of in situ casting due to reduction of use of steel in waterproof applications. However, according to the EN 1990 Eurocode (Basis of structural design), customary application of a novel type of concrete must be preceded by full scale demonstrators proving evidence for safe and functional performance. In this contribution we portray full scale application of bacteria-based self-healing agent as developed by the Delft research group in two repair mortar- and in two concrete construction demonstrator projects. These demonstrator projects show that addition of the bacteria-based self-healing agent to the concrete mix is safe as no negative side effects on construction performance was observed. However, it also proved difficult to find evidence for increased crack-healing performance as cracking in the demonstrator constructions hardly occurred. In further full scale demonstrators we therefore plan to drastically reduce amount of crack width-restraining reinforcement to show crack-healing capacity and potential to save on use of reinforcement steel in watertight concrete constructions.

Author(s):  
Jadin Zam S. Doctolero ◽  
Arnel B. Beltran ◽  
Marigold O. Uba ◽  
April Anne S. Tigue ◽  
Michael Angelo B. Promentilla

A sustainable solution for crack maintenance in geopolymers is necessary if they are to be the future of modern green construction. This study thus aimed to develop self-healing biogeopolymers that could potentially rival bioconcrete. First, a suitable healing agent was selected from Bacillus subtilis, B. sphaericus, and B. megaterium by directly adding their spores in the geopolymers and subsequently exposing them to a large amount of nutrients for 14 days. SEM-EDX analysis revealed the formation of biominerals for B. subtilis and B. sphaericus. Next, the effect of biochar-immobilization and co-culturing (B. sphaericus and B. thuringiensis) on the healing efficiencies of the geopolymers were tested and optimized by measuring their ultrasonic pulse velocities weekly over a 28-day healing period. The results show that using co-cultured bacteria significantly improved the observed efficiencies, while biochar-immobilization had a weak effect but yielded an optimum response between 0.3-0.4 g/mL. The maximum crack width sealed was 0.65 mm. Through SEM-EDX and FTIR analyses, the biominerals precipitated in the cracks were identified to be mainly CaCO3. Furthermore, image analysis of the XCT scans of some of the healed geopolymers confirmed that their pulse velocities were indeed improving due to the filling of their internal spaces with biominerals. With that, there is potential in developing self-healing biogeopolymers using biochar-immobilized spores of bacterial cultures.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
S. A. McDonald ◽  
S. B. Coban ◽  
N. R. Sottos ◽  
P. J. Withers

AbstractStructural polymeric materials incorporating a microencapsulated liquid healing agent demonstrate the ability to autonomously heal cracks. Understanding how an advancing crack interacts with the microcapsules is critical to optimizing performance through tailoring the size, distribution and density of these capsules. For the first time, time-lapse synchrotron X-ray phase contrast computed tomography (CT) has been used to observe in three-dimensions (3D) the dynamic process of crack growth, microcapsule rupture and progressive release of solvent into a crack as it propagates and widens, providing unique insights into the activation and repair process. In this epoxy self-healing material, 150 µm diameter microcapsules within 400 µm of the crack plane are found to rupture and contribute to the healing process, their discharge quantified as a function of crack propagation and distance from the crack plane. Significantly, continued release of solvent takes place to repair the crack as it grows and progressively widens.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 358
Author(s):  
Dowon Song ◽  
Taeseup Song ◽  
Ungyu Paik ◽  
Guanlin Lyu ◽  
Yeon-Gil Jung ◽  
...  

In this work, a novel thermal barrier coating (TBC) system is proposed that embeds silicon particles in coating as a crack-healing agent. The healing agent is encapsulated to avoid unintended reactions and premature oxidation. Thermal durability of the developed TBCs is evaluated through cyclic thermal fatigue and jet engine thermal shock tests. Moreover, artificial cracks are introduced into the buffer layer’s cross section using a microhardness indentation method. Then, the indented TBC specimens are subject to heat treatment to investigate their crack-resisting behavior in detail. The TBC specimens with the embedded healing agents exhibit a relatively better thermal fatigue resistance than the conventional TBCs. The encapsulated healing agent protects rapid large crack openings under thermal shock conditions. Different crack-resisting behaviors and mechanisms are proposed depending on the embedding healing agents.


2018 ◽  
Vol 250 ◽  
pp. 03005 ◽  
Author(s):  
Hassan Amer Ali Algaifi ◽  
Suhaimi Abu Bakar ◽  
Abdul Rahman Mohd Sam ◽  
Ahmad Razin Zainal Abidin

One of the most commonly used materials in the field of construction is concrete. Nevertheless, there are strong inclinations for concrete to form cracks, which would then allow the penetration of both aggressive and harmful substances into the concrete. Subsequently, this will decrease the durability of the affected structures. Thus, the ability for cracks to heal themselves in the affected cementitious materials is in demand to prolong the life of any structure. Autogenous self-healing is one approach to overcome smaller crack widths (macrocracks). Nowadays, crack width-healing is of great importance. Having said that, both polymers and bacteria are the most common approach to enhance autogenous self-healing and bond crack faces. Crack width-healing of up to 0.97 mm was achieved via bacteria-based self-healing. In this paper, the mechanisms of these approaches and their efficiency to heal crack were highlighted. Both bacteria-and polymers-based self-healing are promising techniques for the future. However, long term studies are still required before real applications can be made.


Author(s):  
Jadin Zam S. Doctolero ◽  
Arnel B. Beltran ◽  
Marigold O. Uba ◽  
April Anne S. Tigue ◽  
Michael Angelo B. Promentilla

A sustainable solution for crack maintenance in geopolymers is necessary if they are to be the future of modern green construction. This study thus aimed to develop self-healing biogeopolymers that could potentially rival bioconcrete. First, a suitable healing agent was selected from Bacillus subtilis, B. sphaericus, and B. megaterium by directly adding their spores in the geopolymers and subsequently exposing them to a large amount of nutrients for 14 days. SEM-EDX analysis revealed the formation of biominerals for B. subtilis and B. sphaericus. Next, the effect of biochar-immobilization and co-culturing (B. sphaericus and B. thuringiensis) on the healing efficiencies of the geopolymers were tested and optimized by measuring their ultrasonic pulse velocities weekly over a 28-day healing period. The results show that using co-cultured bacteria significantly improved the observed efficiencies, while biochar-immobilization had a weak effect but yielded an optimum response between 0.3-0.4 g/mL. The maximum crack width sealed was 0.65 mm. Through SEM-EDX and FTIR analyses, the biominerals precipitated in the cracks were identified to be mainly CaCO3. Furthermore, image analysis of the XCT scans of some of the healed geopolymers confirmed that their pulse velocities were indeed improving due to the filling of their internal spaces with biominerals. With that, there is potential in developing self-healing biogeopolymers using biochar-immobilized spores of bacterial cultures.


2021 ◽  
Vol 7 ◽  
Author(s):  
Emanuele Rossi ◽  
Chris M. Vermeer ◽  
Renee Mors ◽  
Robbert Kleerebezem ◽  
Oguzhan Copuroglu ◽  
...  

Bacteria-based self-healing concrete has the ability to heal cracks due to the bacterial conversion of incorporated organic compounds into calcium carbonate. Precipitates seal the cracks, theoretically increasing the service life of constructions. The aim of this paper is to propose a precursor for bacteria-based self-healing concrete derived from organic waste streams, produced is in line with the circular economy principle and ideally more affordable than other substrates. To verify the applicability of the proposed healing agent, some fundamental requirements of the proposed system are studied, such as its influence on functional properties, crack sealing capacity and evidence of bacterial activity in concrete.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2206
Author(s):  
Harry Hermawan ◽  
Peter Minne ◽  
Pedro Serna ◽  
Elke Gruyaert

Self-healing concrete has emerged as one of the prospective materials to be used in future constructions, substituting conventional concrete with the view of extending the service life of the structures. As a proof of concept, over the last several years, many studies have been executed on the effectiveness of the addition of self-healing agents on crack sealing and healing in mortar, while studies on the concrete level are still rather limited. In most cases, mix designs were not optimized regarding the properties of the fresh concrete mixture, properties of the hardened concrete and self-healing efficiency, meaning that the healing agent was just added on top of the normal mix (no adaptations of the concrete mix design for the introduction of healing agents). A comprehensive review has been conducted on the concrete mix design and the impact of healing agents (e.g., crystalline admixtures, bacteria, polymers and minerals, of which some are encapsulated in microcapsules or macrocapsules) on the properties of fresh and hardened concrete. Eventually, the remaining research gaps in knowledge are identified.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6198
Author(s):  
Ji-Sun Lee ◽  
Hyun-Woo Kim ◽  
Jun-Seo Lee ◽  
Hyun-Soo An ◽  
Chan-Moon Chung

The purpose of this study was to develop a microcapsule-type self-healing coating system that could self-heal cracks and then maintain the healed state even upon crack expansion. Mixtures consisting of a photoinitiator and two methacrylate components, bismethacryloxypropyl-terminated polydimethylsiloxane (BMT-PDMS) and monomethacryloxypropyl-terminated PDMS (MMT-PDMS), were transformed into viscoelastic semi-solids through photoreaction. The viscoelasticity of the reacted mixtures could be controlled by varying the mass ratio of the two methacrylates. Through a stretchability test, the optimal composition mixture was chosen as a healing agent. Microcapsules loaded with the healing agent were prepared and dispersed in a commercial undercoating to obtain a self-healing coating formulation. The formulation was applied onto mortar specimens, and then cracks were generated in the coating by using a universal testing machine (UTM). Cracks with around a 150-μm mean width were generated and were allowed to self-heal under UV light. Then, the cracks were expanded up to 650 μm in width. By conducting a water sorptivity test at each expanded crack width, the self-healing efficiency and capability of maintaining the healed state were evaluated. The B-M-1.5-1-based coating showed a healing efficiency of 90% at a 150-μm crack width and maintained its healing efficiency (about 80%) up to a 350-μm crack width. This self-healing coating system is promising for the protection of structural materials that can undergo crack formation and expansion.


2018 ◽  
Vol 68 (330) ◽  
Author(s):  
B. Van Belleghem ◽  
K. Van Tittelboom ◽  
N. De Belie

Cracks in reinforced concrete elements can cause major durability issues due do the accelerated ingress of aggressive substances. In this study, repair of cracks was addressed by incorporating encapsulated polyurethane based healing agents in the cementitious material as an autonomous healing mechanism. Capillary sorption tests showed that a high viscosity healing agent could reduce the water ingress in cracked mortar, but a large scatter in the results was found, resulting in a large range of healing efficiencies (18 – 108%). The low viscosity polyurethane showed a more complete and consistent crack healing. Healing efficiencies ranging from 95 to 124% were observed (crack width up to 295 μm). The proposed healing mechanism is very effective in blocking the ingress of water. This will enhance the durability of cementitious materials and consequently extend their lifetime.


Development of cracks in the concrete leads to mitigation of the strength and durability of the concrete structures. This paper deals with the application of self-healing concrete for an irrigation canal in a village near Erode. The selfhealing of concrete is a result of calcite precipitation by bacteria (Bacillus Megaterium MTCC 3353) mixed with natural fibres. Here, the compressed soil made irrigation canal which has been used by the farmers for agricultural purpose over a century was lined with the self-healing concrete in order to reduce the evaporation and infiltration of water into the soil thereby improving and increasing the functionality yield of the canal. A controlled crack width is assured by means of the fibres used which substantially increase the tensile capacity of the concrete. The properties of the fibre reinforced bio-concrete was evaluated by conducting flexural and compression tests along with study of amount of crack-healing in concrete with and without the use of bacteria.


Sign in / Sign up

Export Citation Format

Share Document