scholarly journals Elucidation of new vitamin K function aiming at application to cardiovascular disease prevention and treatment

Impact ◽  
2021 ◽  
Vol 2021 (5) ◽  
pp. 37-39
Author(s):  
Kimie Nakagawa

Although Vitamin K is known to be required by the human body for blood clotting and bone metabolism, there remain many unknowns about this group of vitamins and there is a lack of biochemical research on vitamin K. Limitations in knowledge about vitamin k may mean that decisions about the vitamin's uptake and bone health may not be optimal. Professor Kimie Nakagawa Laboratory of Hygienic Sciences, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan, is performing detailed investigations on vitamin K to shed light on its specific functions in the human body and contribute to advancements in disease prevention and treatment, including cardiovascular disease. Her studies centre on UBIAD1 (UbiA prenyltransferase domain containing protein 1) and MK-4 (menaquinone-4). She is seeking to elucidate the role of MK-4 in the human body and reveal the unknown functions of UBIAD1. Nakagawa and the teams are doing so using UBIAD1 tissue-specific gene-deficient mice, which they are analysing in order to clarify the significance of biosynthesis of MK-4 in vivo and unravel the role of UBIAD1 and MK-4 in each tissue. Specific research goals for Nakagawa are to elucidate vitamin K conversion mechanisms, establish improved understanding of the physiological function of the vitamin, identify vitamin K converting enzymes and learn and explain more about the physiological function of this enzyme. The team made an important discovery in that UBIAD1 is the enzyme responsible for the conversion of vitamin k to MK-4 and the researchers will continue to build on this groundbreaking finding.

2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Author(s):  
Dorota Ochijewicz ◽  
Mariusz Tomaniak ◽  
Grzegorz Opolski ◽  
Janusz Kochman

AbstractCardiovascular disease remains the leading cause of death and morbidity worldwide. Inflammation plays an important role in the development of atherosclerosis and is associated with adverse clinical outcomes in patients after percutaneous coronary interventions. Data on stent elements that lead to excessive inflammatory response, proper identification of high–risk patients, prevention and treatment targeting residual inflammatory risk are limited. This review aims to present the role of inflammation in the context of evolving stent technologies and appraise the potential imaging modalities in detection of inflammatory response and anti-inflammatory therapies.


Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4158-4169 ◽  
Author(s):  
Lucinda B. Griffin ◽  
Kathleen E. January ◽  
Karen W. Ho ◽  
Kellie A. Cotter ◽  
Gloria V. Callard

Genetically distinct estrogen receptor (ER) subtypes (ERα and ERβ) play a major role in mediating estrogen actions in vertebrates, but their unique and overlapping functions are not entirely clear. Although mammals have 1 gene of each subtype (ESR1 and ESR2), teleost fish have a single esr1 (ERα) and 2 esr2 (ERβa and ERβb) genes. To determine the in vivo role of different ER isoforms in regulating estrogen-inducible transcription targets, zebrafish (Danio rerio) embryos were microinjected with esr-specific morpholino (MO) oligonucleotides to disrupt splicing of the exon III/intron III junction in the DNA-binding domain. Each MO knocked down its respective normal transcript and increased production of variants with a retained intron III (esr1 MO) or a deleted or mis-spliced exon III (esr2a and esr2b MOs). Both esr1 and esr2b MOs blocked estradiol induction of vitellogenin and ERα mRNAs, predominant hepatic genes, but esr2b was the only MO that blocked induction of cytochrome P450 aromatase B mRNA, a predominant brain gene. Knockdown of ERβa with the esr2a MO had no effect on estrogen induction of the 3 mRNAs but, when coinjected with esr1 MO, attenuated the effect of ERα knockdown. Results indicate that ERα and ERβb, acting separately or cooperatively on specific gene targets, are positive transcriptional regulators of estrogen action, but the role of ERβa, if any, is unclear. We conclude that MO technology in zebrafish embryos is an advantageous approach for investigating the interplay of ER subtypes in a true physiological context.


2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Xiao-Fei Liu ◽  
Jing-Wei Li ◽  
Hong-Zhi Chen ◽  
Zi-Yuan Sun ◽  
Guang-Xi Shi ◽  
...  

Abstract Background: Yanghe Huayan Decoction (YHD), a traditional Chinese medicine, is one of the most common complementary medicine currently used in the treatment of breast cancer (BC). It has been recently linked to suppress precancerous lesion and tumor development. The current study sought to explore the role of YHD on trans-endothelium and angiogenesis of BC. Methods: HER2+ BC cells were treated with YHD, Trastuzumab, or the combination in vitro and in vivo to compare the effects of them on trans-endothelium and angiogenesis features. The present study also investigated the potential molecular mechanism of YHD in inhibiting angiogenesis of BC. Results: YHD significantly suppressed the invasion and angiogenesis of BC cells via elevated pAkt signaling. Administration of YHD in vivo also strikingly repressed angiogenesis in tumor grafts. Conclusion: YHD could partially inhibit and reverse tumorigenesis of BC. It also could inhibit Akt activation and angiogenesis in vitro and in vivo. Its effect was superior to trastuzumab. Thus it was suitable for prevention and treatment of BC.


2017 ◽  
Vol 38 ◽  
pp. 45-65 ◽  
Author(s):  
Bartosz Kulczyński ◽  
Anna Gramza-Michałowska ◽  
Joanna Kobus-Cisowska ◽  
Dominik Kmiecik

2020 ◽  
Author(s):  
Yueyang Wang ◽  
Alan Y. Hsu ◽  
Eric M. Walton ◽  
Ramizah Syahirah ◽  
Tianqi Wang ◽  
...  

AbstractTissue-specific knockout techniques are widely applied in biological studies to probe the tissue-specific roles of specific genes in physiology, development, and disease. CRISPR/Cas9 is a widely used technology to perform fast and efficient genome editing in vitro and in vivo. Here, we report a robust CRISPR-based gateway system for tissue-specific gene inactivation in zebrafish. A transgenic fish line expressing Cas9 under the control of a neutrophil-restricted promoter was constructed. As proof of principle, we transiently disrupted rac2 or cdk2 in neutrophils using plasmids driving the expression of sgRNAs from U6 promoters. Loss of the rac2 or cdk2 gene in neutrophils resulted in significantly decreased cell motility, which could be restored by re-expressing Rac2 or Cdk2 in neutrophils in the corresponding knockout background. The subcellular location of Rac activation and actin structure and stress in the context of neutrophil migration was determined in both the wild-type and rac2 knockout neutrophils in vivo. In addition, we evaluated an alternative approach where the Cas9 protein is ubiquitously expressed while the sgRNA is processed by ribozymes and expressed in a neutrophil-restricted manner. Cell motility was also reduced upon rac2 sgRNA expression. Together, our work provides a potent tool that can be used to advance the utility of zebrafish in identification and characterization of gene functions in neutrophils.


Sign in / Sign up

Export Citation Format

Share Document