scholarly journals DESIGN AND CONSTRUCTION OF A LAB-ON-A-PAPER FOR LOW-COST AND DISPOSABLE POINT-OF CARE DIAGNOSTICS

2017 ◽  
Vol 5 (1) ◽  
pp. 26
Author(s):  
Afnidar Afnidar ◽  
Bambang Kuswandi

Abstract This paper presents a low-cost and disposable paper based microfluidic analysis system for point-of-care diagnostics. Detection is achieved by using a colorimetric or visual indicator. Immobilized specific reagent or enzymes designed for the parameter under consideration act as capture molecules on the surface of the detection zone. The sensor is integrated into a microfluidic system made of paper (cellulose). An additional component of the analysis system is a capillary unit which is used to introduce the analyte to the detection zone. For this purpose well- defined, millimeter-sized channel, comprising hydrophobic polymer bounded onto hydrophilic paper was created. Then the detection zone was coated with a sensitive reagent layer as a sensor region. The paper based microfluidics also called lab on paper, has been fabricated using screen printing technology as the basis for low-cost, disposable, portable and technically simple fabrication for mass production. Microfluidics in paper make it feasible to run single, dual or even multiple clinical analyses on one strip of paper while still using only small volumes of a single sample. The capability of lab on paper for detection of importance clinical analyte protein in urine, saliva and blood samples has been demonstrate successfully. Lab on paper as a diagnostic system is small, disposable, and easy to use and requires no external equipment, reagents, or power sources. This kind of diagnostic system is attractive for use in developing countries, in the field, or as a low-cost alternative to more-advanced technologies already used in clinical diagnostics. Keywords: Lab-on-a-paper, Point-of-care, Visual detection, Clinical diagnostic, Disposable sensor

2021 ◽  
Author(s):  
Seyed Ali Tabatabaei ◽  
Mohammad Zabetian targhi

Abstract BackgroundIsolation of microparticles and biological cells on microfluidic chips has received considerable attention due to their applications in numerous areas such as medical and engineering fields. Microparticles separation are of great importance in bioassays owing to the need for a smaller sample and device size, and lower manufacturing costs. In this study, we first explain the concepts of separation and microfluidic science along with their applications in the medical sciences, and then, a conceptual design of a novel inertial microfluidic system is proposed and analyzed. The PDMS spiral microfluidic device was fabricated, and its effects on the separation of particles with sizes similar to biological particles were experimentally analyzed. This separation technique can be used in the process of separating cancer cells from the normal ones in the blood samples.ResultsThese components required for testing were selected, assembled, and finally, a very affordable microfluidic kit was provided. Different experiments were designed, and the results were analyzed using appropriate software and methods. Separator system tests with polydisperse hollow glass particles (diameter 2-20 µm), and monodisperse Polystyrene particles (diameter 5,15 µm), and the results exhibit an acceptable chip performance with 86 percent of efficiency for both monodisperse particles and polydisperse particles. The microchannel collects particles with an average diameter of 15.8 μm, 9.4 μm, and 5.9 μm at the Proposed reservoirs. ConclusionThis chip can be integrated into a more extensive point-of-care diagnostic system to test blood samples, and it could be said Based on the results of the experiments, this low-cost and user-friendly setting can be used for a variety of microparticle separation programs such as cell separation in biological assays.


2002 ◽  
Vol 729 ◽  
Author(s):  
Chong H. Ahn ◽  
Jin-Woo Choi ◽  
Sanghyo Kim ◽  
Young-Soo Sohn ◽  
Aniruddha Puntambekar ◽  
...  

AbstractThis paper presents an overview of the development of novel disposable smart plastic fluidic biochips for clinical diagnostic applications. The biochip is manufactured using a low-cost, rapid turn around injection molding/embossing process on a plastic substrate. The plastic fluidic biochip uses a novel sPROMs (structurally programmable microfluidic system) approach to achieve passive control of fluidic sequencing [1-2]. The plastic biochip also uses an on-chip pressurized air source for fluidic movement thus eliminating the need for active driving mechanisms and allowing for a truly disposable approach. Furthermore, electrochemical biosensors are also integrated on-chip to analyze various metabolically significant parameters such as PO2(partial pressure of oxygen), Glucose, Lactate,and pH. The fluidic biochip is being developed for point-of-care health monitoring applications where parameters such as small size, simplicity of operation, disposability, reduced cross-contamination are vital. The issues mentioned above are successfully addressed using the approach of this work and are discussed in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Author(s):  
Seyed Ali Tabatabaei ◽  
Mohammad Zabetian Targhi

Isolation of microparticles and biological cells on microfluidic chips has received considerable attention due to their applications in numerous areas such as medical and engineering fields. Microparticles separation is of great importance in bioassays due to the need for smaller sample and device size and lower manufacturing costs. In this study, we first explain the concepts of separation and microfluidic science along with their applications in the medical sciences, and then, a conceptual design of a novel inertial microfluidic system is proposed and analyzed. The PDMS spiral microfluidic device was fabricated, and its effects on the separation of particles with sizes similar to biological particles were experimentally analyzed. This separation technique can be used to separate cancer cells from the normal ones in the blood samples. These components required for testing were selected, assembled, and finally, a very affordable microfluidic kit was provided. Different experiments were designed, and the results were analyzed using appropriate software and methods. Separator system tests with polydisperse hollow glass particles (diameter 2–20 µm), and monodisperse Polystyrene particles (diameter 5 & 15 µm), and the results exhibit an acceptable chip performance with 86% of efficiency for both monodisperse particles and polydisperse particles. The microchannel collects particles with an average diameter of 15.8, 9.4, and 5.9 μm at the proposed reservoirs. This chip can be integrated into a more extensive point-of-care diagnostic system to test blood samples.


2011 ◽  
Vol 57 (5) ◽  
pp. 753-761 ◽  
Author(s):  
Ulrich Y Schaff ◽  
Greg J Sommer

BACKGROUND Centrifugal “lab on a disk” microfluidics is a promising avenue for developing portable, low-cost, automated immunoassays. However, the necessity of incorporating multiple wash steps results in complicated designs that increase the time and sample/reagent volumes needed to run assays and raises the probability of errors. We present proof of principle for a disk-based microfluidic immunoassay technique that processes blood samples without conventional wash steps. METHODS Microfluidic disks were fabricated from layers of patterned, double-sided tape and polymer sheets. Sample was mixed on-disk with assay capture beads and labeling antibodies. Following incubation, the assay beads were physically separated from the blood cells, plasma, and unbound label by centrifugation through a density medium. A signal-laden pellet formed at the periphery of the disk was analyzed to quantify concentration of the target analyte. RESULTS To demonstrate this technique, the inflammation biomarkers C-reactive protein and interleukin-6 were measured from spiked mouse plasma and human whole blood samples. On-disk processing (mixing, labeling, and separation) facilitated direct assays on 1-μL samples with a 15-min sample-to-answer time, <100 pmol/L limit of detection, and 10% CV. We also used a unique single-channel multiplexing technique based on the sedimentation rate of different size or density bead populations. CONCLUSIONS This portable microfluidic system is a promising method for rapid, inexpensive, and automated detection of multiple analytes directly from a drop of blood in a point-of-care setting.


2011 ◽  
Vol 133 (23) ◽  
pp. 9129-9135 ◽  
Author(s):  
B. Scott Ferguson ◽  
Steven F. Buchsbaum ◽  
Ting-Ting Wu ◽  
Kuangwen Hsieh ◽  
Yi Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document