scholarly journals Энергия связи пластин кремния и сапфира при повышенных температурах соединения

Author(s):  
И.Е. Тысченко ◽  
Э.Д. Жанаев ◽  
В.П. Попов

AbstractThe hydrophilicity of surfaces and the bonding energy of silicon and sapphire wafers at the temperature of joining 50°C are studied. It is established that heating of the Si and Al_2O_3 wafers to 50°C is accompanied by an increase in the degree of hydrophilicity of the wafer surfaces. The effect is attributed to improvement in the surface purity due to the desorption of impurity atoms into vacuum and to an increase in the density of dangling bonds. It is found that the bonding energy of silicon and sapphire wafers joined at a temperature of 50°C and upon further heating in the range 100–250°C is higher compared to the bonding energy of wafers joined at room temperature. The activation energy of the growth of the bonding energy is determined. It is found that this activation energy is 0.57 eV.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3161
Author(s):  
Sandra Zarska ◽  
Damian Kulawik ◽  
Volodymyr Pavlyuk ◽  
Piotr Tomasik ◽  
Alicja Bachmatiuk ◽  
...  

The bromination of multi-walled carbon nanotubes (MWCNT) was performed with vapor bromine in a closed vessel, and they were subjected to intensive stirring with a magnetic stirrer for up to 14 days. The efficiency of bromination was compared depending upon duration. The structure and surface of the crude and purified products were characterized by detailed physicochemical analyses, such as SEM/EDS, TEM, XRD, TGA, Raman, and XPS spectroscopies. The studies confirmed the presence of bromine covalently bound with nanotubes as well as the formation of inclusion MWCNT–Br2 complexes. It was confirmed that Br2 molecules are absorbed on the surface of nanotubes (forming the CNT-Br2 complex), while they can dissociate close to dangling bonds at CNT defect sites with the formation of covalent C−Br bonds. Thus, any covalent attachment of bromine to the graphitic surface achieved around room temperature is likely related to the defects in the MWCNTs. The best results, i.e., the highest amount of attached Br2, were obtained for brominated nanotubes brominated for 10 days, with the content of covalently bound bromine being 0.68 at% (by XPS).


2021 ◽  
pp. 009524432110203
Author(s):  
Sudhir Bafna

It is often necessary to assess the effect of aging at room temperature over years/decades for hardware containing elastomeric components such as oring seals or shock isolators. In order to determine this effect, accelerated oven aging at elevated temperatures is pursued. When doing so, it is vital that the degradation mechanism still be representative of that prevalent at room temperature. This places an upper limit on the elevated oven temperature, which in turn, increases the dwell time in the oven. As a result, the oven dwell time can run into months, if not years, something that is not realistically feasible due to resource/schedule constraints in industry. Measuring activation energy (Ea) of elastomer aging by test methods such as tensile strength or elongation, compression set, modulus, oxygen consumption, etc. is expensive and time consuming. Use of kinetics of weight loss by ThermoGravimetric Analysis (TGA) using the Ozawa/Flynn/Wall method per ASTM E1641 is an attractive option (especially due to the availability of commercial instrumentation with software to make the required measurements and calculations) and is widely used. There is no fundamental scientific reason why the kinetics of weight loss at elevated temperatures should correlate to the kinetics of loss of mechanical properties over years/decades at room temperature. Ea obtained by high temperature weight loss is almost always significantly higher than that obtained by measurements of mechanical properties or oxygen consumption over extended periods at much lower temperatures. In this paper, data on five different elastomer types (butyl, nitrile, EPDM, polychloroprene and fluorocarbon) are presented to prove that point. Thus, use of Ea determined by weight loss by TGA tends to give unrealistically high values, which in turn, will lead to incorrectly high predictions of storage life at room temperature.


2016 ◽  
Vol 34 (1) ◽  
pp. 164-168
Author(s):  
Raz Muhammad ◽  
Muhammad Uzair ◽  
M. Javid Iqbal ◽  
M. Jawad Khan ◽  
Yaseen Iqbal ◽  
...  

AbstractCa2Nd4Ti6O20, a layered perov skite structured material was synthesized via a chemical (citrate sol-gel) route for the first time using nitrates and alkoxide precursors. Phase analysis of a sample sintered at 1625 °C revealed the formation of an orthorhombic (Pbn21) symmetry. The microstructure of the sample after sintering comprised rod-shaped grains of a size of 1.5 to 6.5µm. The room temperature dielectric constant of the sintered sample was 38 at 100 kHz. The remnant polarization (Pr) and the coercive field (Ec) were about 400 μC/cm2 and 8.4 kV/cm, respectively. Impedance spectroscopy revealed that the capacitance (13.7 pF) and activation energy (1.39 eV) of the grain boundary was greater than the capacitance (5.7 pF) and activation energy (1.13 eV) of the grain.


2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.


Pro Food ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 277-282
Author(s):  
Ali Mursyid Wahyu Mulyono ◽  
Afriyanti . ◽  
Joko Setyo Basuki ◽  
Sri Sukaryani

Pokoh Kidul is the center of figs plant in Wonogiri area. Figs was processed into syrup with “Kharomah” as brand by Posdaya Lancar Barokah. But, the shelf life of this syrup was not yet known. Therefore, the purpose of this study was to determine the shelf life of this syrup by the Accelerated Shelf Life Testing (ASLT) method. Product was saved at temperature of 50C, 300C and 500C for 28 days. Every 7 days, a sample was taken and then the color, pH and reducing sugar was analysed. The lowest activation energy was obtained from the analysis of reducing sugar changes, it is 287,55 mol/cal. The shelf life of figs syrup at room temperature was 19 days, and 22 days at low temperature.Keywords: ASLT, figs, shelf life, syrupABSTRAKDesa Pokoh Kidul merupakan sentra tanaman buah tin di daerah Wonogiri. Buah tin yang dihasilkan selama ini diolah menjadi sirup buah tin dengan merk “Kharomah” oleh Posdaya Lancar Barokah. Akan tetapi, belum diketahui umur simpan dari sirup ini. Oleh karena itu, tujuan dari penelitian ini untuk mengetahui umur simpan sirup buah tin dengan metode Accelerated Shelf Life Testing (ASLT). Metode penelitian yang digunakan yaitu dengan penyimpanan produk sirup pada tiga suhu yang berbeda yaitu 50, 300 dan 500C selama 28 hari. Setiap 7 hari sekali diambil sampel dan dilakukan analisis warna, pH dan kadar gula reduksi. Energi aktivasi terendah didapatkan dari hasil analisis perubahan kadar gula reduksi yaitu 287,55 mol/kal. Umur simpan sirup buah tin di suhu ruang selama 19 hari, sedangkan di suhu rendah selama 22 hari.


2019 ◽  
Vol 14 (29) ◽  
pp. 37-43 ◽  
Author(s):  
Raied K. Jamal

The electrical properties of pure NiO and NiO:Au Films which aredeposited on glass substrate with various dopant concentrations(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Coannealing temperature will be presented. The results of the hall effectshowed that all the films were p-type. The Hall mobility decreaseswhile both carrier concentration and conductivity increases with theincreasing of annealing temperatures and doping percentage, Thus,indicating the behavior of semiconductor, and also the D.Cconductivity from which the activation energy decrease with thedoping concentration increase and transport mechanism of the chargecarriers can be estimated.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Yeh An-Chou ◽  
Chuang Ho-Chieh ◽  
Kuo Chen-Ming

Thermally activated energy, which varies linearly with static recovered strain, is calculated from static recovery experiments of pure aluminum initially plastically deformed by strain-rate-controlled tensile tests up to 10% engineering strain at room temperature. The activation energy at the initial static recovery is 20 kJ mol−1, which is much less than that of pure copper and attributed to the dislocation annihilation by glide or cross-slip as well as higher stacking fault energy. Once dislocation annihilation processes are exhausted, more energy is required for subgrains to form and then grow. Eventually the recovered strain is slowed down and gradually saturated.


1975 ◽  
Vol 53 (22) ◽  
pp. 2481-2484 ◽  
Author(s):  
J. B. Webb ◽  
D. E. Brodie

The crystallization of amorphous zinc telluride (a-ZnTe) has been studied as a function of temperature in the range 350 K < T < 390 K. The crystallization process is thermally activated with an activation energy of 1.6 eV. The time for the onset of significant crystallization at room temperature for films of air-annealed a-ZnTe is found to be ~100 years. The study of the crystallization process is essential in order to determine the maximum time allowed for a measurement to be performed at a given temperature on a sample of amorphous material without significantly altering its amorphous state.


1987 ◽  
Vol 97 ◽  
Author(s):  
Tadamasa Kimura ◽  
Hiroyuki Yamaguchi ◽  
Shigemi Yugo ◽  
Yoshio Adachi

ABSTRACTThe β-SiC formation process through post-implantation annealing of Si-C mixtures fabricated on Si by C-ion implantation at room temperature is studied by means of infrared absorption spectroscopy. It is shown that the formation of B-SiC from the Si-C mixtures is greatly enhanced by the subsequent irradiation of other energetic ions prior to the thermal annealing. The continuous amorphization of the Si-C mixed layers is considered to be the dominant cause for the enhancement of the B-SiC formation. The activation energy of the β-SiC formation process which is 5.3 eV without irradiation is reduced to 4.0 eV by the irradiation of 150 keV, 1 × 1017/cm2 Ar ions.


Sign in / Sign up

Export Citation Format

Share Document