scholarly journals Диодные гетероструктуры с ферромагнитными узкозонными полупроводниками A-=SUP=-3-=/SUP=-FeB-=SUP=-5-=/SUP=- разного типа проводимости

2021 ◽  
Vol 63 (7) ◽  
pp. 866
Author(s):  
В.П. Лесников ◽  
М.В. Ведь ◽  
О.В. Вихрова ◽  
Ю.А. Данилов ◽  
Б.Н. Звонков ◽  
...  

Diode structures with ferromagnetic narrow-gap semiconductors A3FeB5 as only p-region (p-GaFeSb/n-InGaAs), only n-region (n-InFeSb/p-InGaAs), p- and n-regions (p-GaFeSb/n-InFeSb, p-GaFeSb/n-InFeAs) for p-n junction were fabricated by pulsed laser deposition in vacuum. The composition of ferromagnetic semiconductor layers and their thicknesses, determined by X-ray photoelectron spectroscopy, generally correspond to the technological data for diode structures. In particular, the thickness of the GaFeSb layer is 25–30 nm, and the thickness of the InFeAs and InFeSb layers is 35–40 nm. The iron content in InFeSb ranges from 25 to 35 at.%. The GaFeSb layer contains from 15 to 41 iron at. %, and the InFeAs layer - 35 iron at. %. The chemical analysis of the structures revealed the presence of chemical bonds Fe-As (Sb), In-Fe and Fe-Ga. Therefore, it can be assumed that Fe atoms in the fabricated structures can substitute for elements of groups III and V simultaneously. All structures exhibit the effect of negative magnetoresistance at sufficiently low observation voltages of the effect (up to 50 mV), in low magnetic fields (up to 3600 Oe), and at high measurement temperatures. For GaFeSb/InFeSb, GaFeSb/InFeAs diodes, negative magnetoresistance was first observed at room temperature. The hysteresis form of the dependences of the resistance on the magnetic field suggests the effect of the ferromagnetic properties of the layers of narrow-gap semiconductors on the transport of carriers in the structures.

1998 ◽  
Vol 52 (9) ◽  
pp. 1160-1164 ◽  
Author(s):  
N. T. McDevitt ◽  
J. E. Bultman ◽  
J. S. Zabinski

The amorphous structure of MoS2 lms prepared by pulsed laser deposition (PLD) has been evaluated with the use of Raman and X-ray photoelectron spectroscopy (XPS). The initial study of the room-temperature deposited films indicated a featureless Raman spectrum. On closer examination, however, four weak reproducible bands were observed. There has been some confusion in the literature as to the nature of this spectrum—whether it represents an amorphous MoS3 structure or a mixture of MoS2 and sulfur. Our interpretation of the Raman and XPS data indicates that the laser-deposited films represent a mixture of small domains of MoS2 and amorphous sulfur.


Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 522
Author(s):  
Zhi Yan Lee ◽  
Huzein Fahmi bin Hawari ◽  
Gunawan Witjaksono bin Djaswadi ◽  
Kamarulzaman Kamarudin

A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor’s prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.


2005 ◽  
Vol 12 (02) ◽  
pp. 185-195
Author(s):  
M. RUSOP ◽  
T. SOGA ◽  
T. JIMBO

Amorphous carbon nitride films ( a-CN x) were deposited by pulsed laser deposition of camphoric carbon target with different substrate temperatures (ST). The influence of ST on the synthesis of a-CN x films was investigated. The nitrogen-to-carbon (N/C) and oxygen-to-carbon (O/C) atomic ratios, bonding state, and microstructure of the deposited a-CN x films were characterized by X-ray photoelectron spectroscopy and were confirmed by other standard measurement techniques. The bonding states between C and N , and C and O in the deposited films were found to be significantly influenced by ST during the deposition process. The N/C and O/C atomic ratios of the a-CN x films reached the maximum value at 400°C. ST of 400°C was proposed to promote the desired sp 3-hybridized C and the C 3 N 4 phase. The C–N bonding of C–N , C=N and C≡N were observed in the films.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1631-1636 ◽  
Author(s):  
Boya Cui ◽  
D. Bruce Buchholz ◽  
Li Zeng ◽  
Michael Bedzyk ◽  
Robert P. H. Chang ◽  
...  

ABSTRACTThe cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document