scholarly journals Фотолюминесценция низкоразмерных композитных структур полиметилметакрилат/(Zn,Cd,Mn,Eu)S

2021 ◽  
Vol 91 (5) ◽  
pp. 808
Author(s):  
В.П. Смагин ◽  
А.А. Исаева

A colloidal technology for the synthesis and doping of low-dimensional structures based on zinc and cadmium sulfides directly in the medium of an acrylic monomer is implemented in the process of obtaining optically transparent compositions of polymethylmethacrylate/(Zn,Cd,Mn,Eu)S. It is shown that the photoluminescence of the compositions is associated with a system of levels of structural defects of semiconductor particles located in its band gap, which are formed during successive doping of ZnS and CdS layers with Mn2+ and Eu3+ ions, and with intraband 5D0 → 7F1,2,4 transitions of 4f-electrons of Eu3+ ions. Photoluminescence excitation it occurs as a result of the transition of electrons from the valence band of a semiconductor to the levels of defects in its structure and partial energy transfer to the excited energy levels of Eu3+ ions.

Author(s):  
В.П. Смагин ◽  
А.А. Исаева ◽  
Е.А. Шелепова

Nanoscale particles ZnS:Nd3+, CdS:Nd3+ and (Zn,Cd)S:Nd3+ were synthesized and doped in a polymerizing methyl methacrylate medium during the production of optically transparent polyacrylate composites of the composition PMMA/ZnS:Nd3+, PMMA/CdS:Nd3+ and PMMA/(Zn,Cd)S:Nd3+. The excitation of photoluminescence (FL) and FL of semiconductor structures in composites is associated with the transition of electrons from the valence band to the conduction band and to the levels of structural defects of semiconductor particles, followed by recombination at these levels. Based on changes in the excitation spectra of FL and FL composites, assumptions are made about the structure of particles, the distribution of Nd3+ ions in it and their effect on photoluminescence.


1984 ◽  
Vol 36 ◽  
Author(s):  
L. J. Cheng

ABSTRACTIt is found that the recombination activities of dislocation complexes and structural defects decorating twin boundaries in as-grown, p-type cast polycrystalline silicon have no observable temperature dependence in the range of 100–300 K, but the activities of these defects in phosphorusdiffused samples decrease with the increase of temperature in the same range. The results suggest that the phosphorus diffusion can cause a significant shift of energy levels of these defects toward the valence band from the middle of the band gap.


Author(s):  
Adriana Lucia Gélvez ◽  
Willian Gutierrez ◽  
Fredy Rodríguez Prada

Introducción: Recientemente, las investigaciones en el campo de la materia condensada se han venido enfocando en el estudio de estructuras fabricadas mediante diferentes técnicas de crecimiento de cristales, en especial de materiales semiconductores y esto ha despertado un gran interés en el estudio teórico y aprovechamiento tecnológico de las importantes propiedades que despliegan los sistemas de partículas confinadas en puntos cuánticos con diferentes morfologías (nano-estructuras semiconductoras cero-dimesionales). Un atractivo especial en el área de los sistemas de baja dimensionalidad es el estudio de las propiedades opto-electrónicas de puntos cuánticos en forma de irregulares. Los Anillos Cuánticos, especialmente, son estructuras que poseen simetría axial y presentan una cavidad semiconductora en la región comprendida entre su radio interno y externo. Debido al confinamiento periódico el comportamiento de los portadores de carga en esta estructura deben tener un carácter diferente en presencia de un campo magnético externo, como sucede con el denominado Efecto Oscilatorio Aharonov-Bohm (AB). Este fenómeno se observa generalmente cuando una partícula cargada confinada en un sistema de baja dimensionalidad está afectada por un campo electromagnético externo. Materiales y Métodos: Se analiza el efecto de la irregularidad morfológica en puntos cuánticos lenticulares y de anillos cuánticos tipo cráter, que se encuentran sometidos a un campo magnético en la dirección de crecimiento, sobre el espectro energético de un electrón confinado en cada uno de ellos. Resultados y discusión: Los defectos estructurales son modelados mediante funciones en coordenadas cilíndricas, las cuales presentan soluciones analíticas para los casos isotrópicos. Posteriormente, los resultados de los estados energéticos del electrón en las estructuras simétricas permiten obtener el comportamiento de la energía para problemas completos y complejos mediante el uso de métodos numéricos, como diagonalización exacta y expansión en series. Conclusiones: Se presentan en este trabajo los niveles energéticos de un electrón en función de intensidad del campo magnético y se reportan comportamientos diferentes para ambos tipos de QDs considerados, principalmente porque en los de tipo cráter se presentan oscilanes AB, característico de anillos cuánticos unidimensionales. En este estudio el surgimiento de oscilaciones AB, en puntos cuántico tipo cráter se debe a la mayor probabilidad de ubicar al electrón en el borde de la estructura, ya que esta zona es la de menor confinamiento cuántico. Introduction: Recently, research in the field of condensed matter have been focusing on the study of structures fabricated by different techniques of crystal growth, especially semiconductor materials this has aroused great interest in the theoretical study and technological performance of the important properties that display particle systems confined in quantum dots with differentmorphologies (semiconductor nanostructures zero - dimensional). A special interest in the field of low - dimensional systems is the study of opto - electronic properties of quantum dots with irregular shapes. Quantum Rings, especially, are semiconductor structures having axial symmetry and have a cavity in the region between the inner and outer radius. Due to the periodic confinement the behavior of charge carriers in such structures should have a different character in the presence of an external magnetic field, as with the so-called Aharonov-Bohm Effect (AB). This phenomenon is usually observed when a charged particle confined in a low dimensional system is affected by an external electromagnetic field. Materials and methods: We analyzes the effect of morphological irregularity of lenticular- like and crater-like quantum dots, and the effect of a magnetic field applied in the growth direction on the energy spectrum of an electron confined in these structures. Results and discussion: Structural defects are modeled by functions in cylindrical coordinates, which presented analytical solutions for the isotropic case. Subsequently, the results of energy states of the electron in symmetrical structures allow obtain the energy to complete and complex problems by using numerical methods, as exact diagonalization and series expansion. Conclusions: We present the energy levels of an electron as a function of magnetic field intensity and shown different behaviors for both types of QDs considered, mainly AB oscillations in crater-like quantum dots, characteristic phenomena of one-dimensional quantum rings. This effect is due to the higher probability of finding the electron in the outer border of the structure, because this region has the lowest quantum confinement.


Author(s):  
В.П. Смагин ◽  
А.А. Исаева

Nanoscale structures based on zinc and cadmium sulfides doped with Mn, Cu, and Eu ions were synthesized by the method of emerging reagents in a polymerizing medium of methyl methacrylate. The broadband photoluminescence of the compositions is associated with recombination processes at the defect levels of semiconductor structures. Narrow photoluminescence bands occur during electron transitions between the energy levels of Eu3+ ions. The excitation of photoluminescence occurs as a result of the interband transition and electron transitions to the levels of structural defects, as well as during self-absorption and energy transfer to the levels of Eu3+ ions.


2021 ◽  
Vol 11 (10) ◽  
pp. 4508
Author(s):  
Pavel Šofer ◽  
Michal Šofer ◽  
Marek Raček ◽  
Dawid Cekus ◽  
Paweł Kwiatoń

The scattering phenomena of the fundamental antisymmetric Lamb wave mode with a horizontal notch enabling the partial energy transfer (PET) option is addressed in this paper. The PET functionality for a given waveguide is realized using the material interface. The energy scattering coefficients are identified using two methods, namely, a hybrid approach, which utilizes the finite element method (FEM) and the general orthogonality relation, and the semi-analytical approach, which combines the modal expansion technique with the orthogonal property of Lamb waves. Using the stress and displacement continuity conditions on the present (sub)waveguide interfaces, one can explicitly derive the global scattering matrix, which allows detailed analysis of the scattering process across the considered interfaces. Both methods are then adopted on a simple representation of a surface breaking crack in the form of a vertical notch, of which a certain section enables not only the reflection of the incident energy, but also its nonzero transfer. The presented results show very good conformity between both utilized approaches, thus leading to further development of an alternative technique.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Takuya Kawazu

Optical properties of GaAs/AlGaAs quantum wells (QWs) in the vicinity of InAlAs quantum dots (QDs) were studied and compared with a theoretical model to clarify how the QD strain affects the electronic states in the nearby QW. In0.4Al0.6As QDs are embedded at the top of the QWs; the QD layer acts as a source of strain as well as an energy barrier. Photoluminescence excitation (PLE) measurements showed that the QD formation leads to the increase in the ratio Ie-lh/Ie-hh of the PLE intensities for the light hole (lh) and the heavy hole (hh), indicating the presence of the valence band mixing. We also theoretically calculated the hh-lh mixing in the QW due to the nearby QD strain and evaluated the PLE ratio Ie-lh/Ie-hh.


Author(s):  
Rui Tan ◽  
Qi Qi ◽  
Peng Wang ◽  
Yan-Qiang Cao ◽  
Rongrong Si ◽  
...  

Abstract α-Sn is a topologically nontrivial semimetal in its natural structure. Upon compressively strained in plane, it transforms into a topological insulator. But, up to now, a clear and systematic understanding of the topological surface mode of topological insulating α-Sn is still lacking. In the present work, first-principle simulations are employed to investigate the electronic structure evolution of Ge1-xSnx alloys aiming at understanding the band reordering, topological phase transition and topological surface mode of α-Sn in detail. Progressing from Ge to Sn with increasing Sn content in Ge1-xSnx, the conduction band inverts with the first valence band and then with the second valence band sequentially, rather than inverting with the latter directly. Correspondingly, a topologically nontrivial surface mode arises in the first inverted band gap. Meanwhile, a fragile Dirac cone appears in the second inverted band gap as a result of the reorganization of the topological surface mode caused by the first valence band. The reorganization of the topological surface mode in α-Sn is very similar to the HgTe case. The findings of the present work are helpful for understanding and utilizing of the topological surface mode of α-Sn.


MRS Advances ◽  
2019 ◽  
Vol 4 (40) ◽  
pp. 2217-2222
Author(s):  
Renu Choudhary ◽  
Rana Biswas ◽  
Bicai Pan ◽  
Durga Paudyal

AbstractMany novel materials are being actively considered for quantum information science and for realizing high-performance qubit operation at room temperature. It is known that deep defects in wide-band gap semiconductors can have spin states and long coherence times suitable for qubit operation. We theoretically investigate from ab-initio density functional theory (DFT) that the defect states in the hexagonal silicon carbide (4H-SiC) are potential qubit materials. The DFT supercell calculations were performed with the local-orbital and pseudopotential methods including hybrid exchange-correlation functionals. Di-vacancies in SiC supercells yielded defect levels in the gap consisting of closely spaced doublet just above the valence band edge, and higher levels in the band gap. The divacancy with a spin state of 1 is charge neutral. The divacancy is characterized by C-dangling bonds and a Si-dangling bonds. Jahn-teller distortions and formation energies as a function of the Fermi level and single photon interactions with these defect levels will be discussed. In contrast, the anti-site defects where C, Si are interchanged have high formation energies of 5.4 eV and have just a single shallow defect level close to the valence band edge, with no spin. We will compare results including the defect levels from both the electronic structure approaches.


Sign in / Sign up

Export Citation Format

Share Document