scholarly journals Новые типы фотонно-кристаллических двухзазорных резонаторов для миниатюрных многолучевых клистронов коротковолновой части СВЧ-диапазона

Author(s):  
А.В. Ливчина ◽  
В.А. Царев

The results of three-dimensional electrodynamic modeling of photonic-crystal double-gaps resonators designed for use in miniature multi-beams klystrons. In the new resonators, the solid metal body is replaced by a similarly shaped lattice of metal rods, allowing to suppress parasitic types of vibrations. It is shown that such oscillatory systems have an improved complex of electrodynamic and mass-dimensional parameters. The conditions of tuning these systems to a highly efficient two-mode of interaction are investigated with multi-beam electron flow simultaneously at two frequencies corresponding to the main (antiphase) and the first higher (in-phase) types of oscillations.

RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


2021 ◽  
Vol 36 (1) ◽  
pp. 189-197
Author(s):  
Sen Wang ◽  
Xiao Wang ◽  
Xiao-yu Shi ◽  
Cai-xia Meng ◽  
Cheng-lin Sun ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Maria Jose Segovia ◽  
Daniel Diaz ◽  
Katarzyna Slezak ◽  
Felipe Zuñiga

AbstractTo analyze the process of subduction of the Nazca and South American plates in the area of the Southern Andes, and its relationship with the tectonic and volcanic regime of the place, magnetotelluric measurements were made through a transversal profile of the Chilean continental margin. The data-processing stage included the analysis of dimensional parameters, which as first results showed a three-dimensional environment for periods less than 1 s and two-dimensional for periods greater than 10 s. In addition, through the geomagnetic transfer function (tipper), the presence of structural electrical anisotropy was identified in the data. After the dimensional analysis, a deep electrical resistivity image was obtained by inverting a 2D and a 3D model. Surface conductive anomalies were obtained beneath the central depression related to the early dehydration of the slab and the serpentinization process of the mantle that coincides in location with a discontinuity in the electrical resistivity of a regional body that we identified as the Nazca plate. A shallow conductive body was located around the Calbuco volcano and was correlated with a magmatic chamber or reservoir which in turn appears to be connected to the Liquiñe Ofqui fault system and the Andean Transverse Fault system. In addition to the serpentinization process, when the oceanic crust reaches a depth of 80–100 km, the ascending fluids produced by the dehydration and phase changes of the minerals present in the oceanic plate produce basaltic melts in the wedge of the subcontinental mantle that give rise to an eclogitization process and this explains a large conductivity anomaly present beneath the main mountain range.


2019 ◽  
Vol 7 (9) ◽  
pp. 4549-4560 ◽  
Author(s):  
Youdong Cheng ◽  
Linzhi Zhai ◽  
Yunpan Ying ◽  
Yuxiang Wang ◽  
Guoliang Liu ◽  
...  

A three-dimensional covalent organic framework filler with size-selective pores has been proven effective in boosting the membrane CO2 capture performance.


2006 ◽  
Vol 532-533 ◽  
pp. 568-571
Author(s):  
Ming Zhou ◽  
Hai Feng Yang ◽  
Li Peng Liu ◽  
Lan Cai

The photo-polymerization induced by Two-Photon Absorption (TPA) is tightly confined in the focus because the efficiency of TPA is proportional to the square of intensity. Three-dimensional (3D) micro-fabrication can be achieved by controlling the movement of the focus. Based on this theory, a system for 3D-micro-fabrication with femtosecond laser is proposed. The system consists of a laser system, a microscope system, a real-time detection system and a 3D-movement system, etc. The precision of micro-machining reaches a level down to 700nm linewidth. The line width was inversely proportional to the fabrication speed, but proportional to laser power and NA. The experiment results were simulated, beam waist of 0.413μm and TPA cross section of 2×10-54cm4s was obtained. While we tried to optimize parameters, we also did some research about its applications. With TPA photo-polymerization by means of our experimental system, 3D photonic crystal of wood-pile structure twelve layers and photonic crystal fiber are manufactured. These results proved that the micro-fabrication system of TPA can not only obtain the resolution down to sub-micron level, but also realize real 3D micro-fabrication.


Sign in / Sign up

Export Citation Format

Share Document