The Impact of Death-Risk Experiences and Religiosity on the Fear of Personal Death: The Case of Israeli Soldiers in Lebanon

1993 ◽  
Vol 26 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Victor Florian ◽  
Mario Mikulincer

The current study attempts to investigate the impact of death-risk experience (life-threatening experiences of Israeli soldiers who served in Lebanon after the 1982 Lebanon War) and religiosity on the diverse aspects of the fear of personal death. One-hundred-thirty-four Israeli Jewish male participants were divided into religious and nonreligious groups, and were subdivided into three groups according to the encounter with a death-risk experience in the last three months. One group served in Lebanon and was involved in threatening activities; a second group served in Lebanon, but was not exposed to life-threatening experiences; and a third did not serve in Lebanon in this period. All the participants completed the Fear of Personal Death Scale. Results indicated that religious participants reported lower levels of fear of death than nonreligious participants. In addition, the exposure to death-risk experience produced elevated levels of fear of death only among nonreligious persons. The role of religiosity and the complex nature of the link between personal experiences and fear of death are discussed.

2018 ◽  
Vol 33 (3) ◽  
pp. 5-16 ◽  
Author(s):  
Carolyn M. Callahan

ABSTRACT In this paper, I offer personal insights based on my experiences (thus far) in an evolving academic accounting career model. While I value all aspects of an academic career responsibilities (teaching, research, and service), this narrative focuses primarily on the role of accounting scholarship and, broadly, the impact of diversity on the same. I offer these perspectives and personal experiences from the unique vantage point as an African American woman, focused first on contributing to top-tired accounting scholarship, and more recently on roles as an administrator of an accounting department and business college. While my academic journey is unique by objective measures (often dubbed “trailblazing” by others), I offer suggestions that may be useful to any academic who is dedicated to success in our field. Given the evolving accounting model and challenges ahead, my overriding goal remains to encourage junior accounting colleagues to persevere, as an accounting academic career is richly rewarding.


2021 ◽  
Author(s):  
Mario Mastrangelo ◽  
Valentina Baglioni

AbstractNeurological emergencies account for about one-third of the highest severity codes attributed in emergency pediatric departments. About 75% of children with acute neurological symptoms presents with seizures, headache, or other paroxysmal events. Life-threatening conditions involve a minor proportion of patients (e.g., less than 15% of children with headache and less than 5% of children with febrile seizures). This review highlights updated insights about clinical features, diagnostic workup, and therapeutic management of pediatric neurological emergencies. Particularly, details will be provided about the most recent insights about headache, febrile seizures, status epilepticus, altered levels of consciousness, acute motor impairment, acute movement disorders, and functional disorders, as well as the role of diagnostic tools (e.g., neuroimaging, lumbar puncture, and electroencephalography), in the emergency setting. Moreover, the impact of the current novel coronavirus disease2019 (COVID-19) pandemic on the evaluation of pediatric neurologic emergencies will also be analyzed.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. LBA-3-LBA-3
Author(s):  
Yujin Zhang ◽  
Vladimir Berka ◽  
Wei Wang ◽  
Weiru Zhang ◽  
Chen Ning ◽  
...  

Abstract LBA-3 Sickle cell disease (SCD) is a debilitating hemolytic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was first identified a century ago, we still lack effective mechanism-based safe therapies to treat this disease. Thus, identification of specific molecules triggering sickling, the central pathogenic process of the disease, is extremely important to advance our understanding of the molecular basis for the pathogenesis of SCD and to develop novel therapeutics. Using non-biased metabolomic screening, we found that sphingosine-1-phosphate (S1P) is significantly elevated in the blood of SCD mice. Further analysis revealed that the activity of sphingosine kinase 1 (Sphk1, the enzyme that produces S1P) is significantly elevated in erythrocytes of SCD mice. Chronic treatment of SCD mice with a SphK1 inhibitor significantly attenuated sickling, hemolysis, inflammation and multiple tissue damage by reducing erythrocyte and plasma S1P levels. Erythrocyte S1P levels were further elevated following hypoxia/reoxygenation-induced acute sickle crisis (ASC) in SCD mice and blocking its elevation by a Sphk1 specific inhibitor significantly reduced hallmark features associated with ASC. As with SCD mice, we found that erythrocyte Sphk1 activity and erythrocyte and plasma S1P levels were significantly elevated in humans with SCD compared to normal individuals. Inhibition of SphK1 in cultured primary human erythrocytes isolated from SCD patients inhibited hypoxia-induced elevation of erythrocyte S1P levels and reduced sickling. Thus, we have revealed for the first time that SphK1-mediated S1P elevation in SCD erythrocytes is a key contributor to sickling in SCD and that Sphk1 inhibition can attenuate both acute and chronic sickling events and disease progression. S1P is an important signaling molecule regulating diverse biological processes. Although S1P is predominantly produced and stored in RBCs, nothing was known about the physiological role of S1P in normal RBCs or the pathophysiological role of S1P in SCD until we conducted a metabolomic screen. In an effort to determine the molecular mechanism underlying S1P-induced sickling, we unexpectedly found that S1P directly binds with Hb and results in a reduced Hb-O2 affinity. This finding led us to further discover that 2,3-diphosphoglycerate, another erythrocyte specific allosteric modulator, is required for S1P-mediated allosteric modulation and that these two endogenous heterotropic modulators work cooperatively to induce a substantial reduction in Hb-O2 affinity. Supporting the biochemical and functional findings, molecular modeling predicts that S1P binds near the water filled central cavity of HbA at a site that is different from the Hb-2,3-DPG binding site. Thus, our discovery adds a significant new chapter to erythrocyte physiology by revealing S1P is a novel allosteric modulator of Hb-O2 affinity and also providing a mechanism underlying S1P-mediated sickling by promoting the formation of deoxyHbS. Thus, the work reported here could be the foundation leading to future human trials and a possible therapy for SCD, a life-threatening hemolytic disorder for which the current treatment is extremely limited. The significance of our findings extends well beyond SCD. Our findings reveal a previously unrecognized important role for S1P in erythrocyte physiology and indicate a new concept for the regulation of O2 release from Hb under normal and sickle cell disease conditions. For SCD, elevated S1P is detrimental because reduced Hb-O2 affinity leads to more deoxygenation of HbS, increased sickling and subsequent multiple life-threatening complications. However, for normal erythrocytes, elevated S1P is likely beneficial by decreasing Hb-O2 affinity allowing for more O2 release to hypoxic tissues. Thus, for humans with normal Hb, if elevated S1P can induce O2 release to hypoxic tissues it may be a novel therapeutic target for a range of disorders, from chronic heart failure to diabetic retinopathy, traumatic blood loss, pulmonary disease and even cancer. In this way our findings reveal important novel opportunities to treat and prevent not only SCD but also multiple cardiovascular and pulmonary diseases associated with hypoxia. Thus, the impact of our novel finding is significant and enormous. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Elisa Wirthgen ◽  
Andreas Hoeflich

The degradation of tryptophan (TRP) along the kynurenine pathway plays a crucial role as a neuro- and immunomodulatory mechanism in response to inflammatory stimuli, such as lipopolysaccharides (LPS). In endotoxemia or sepsis, an enhanced activation of the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO) is associated with a higher mortality risk. It is assumed that IDO induced immunosuppressive effects provoke the development of a protracted compensatory hypoinflammatory phase up to a complete paralysis of the immune system, which is characterized by an endotoxin tolerance. However, the role of IDO activation in the development of life-threatening immunoparalysis is still poorly understood. Recent reports described the impact of inflammatory IDO activation and aryl hydrocarbon receptor- (AhR-) mediated pathways on the development of LPS tolerance and immune escape of cancer cells. These immunosuppressive mechanisms offer new insights for a better understanding of the development of cellular dysfunctions in immunoparalysis. This review provides a comprehensive update of significant biological functions of TRP metabolites along the kynurenine pathway and the complex regulation of LPS-induced IDO activation. In addition, the review focuses on the role of IDO-AhR-mediated immunosuppressive pathways in endotoxin tolerance and carcinogenesis revealing the significance of enhanced IDO activity for the establishment of life-threatening immunoparalysis in sepsis.


2019 ◽  
Vol 20 (19) ◽  
pp. 4707 ◽  
Author(s):  
Alan Vega-Bautista ◽  
Mireya de la Garza ◽  
Julio César Carrero ◽  
Rafael Campos-Rodríguez ◽  
Marycarmen Godínez-Victoria ◽  
...  

Lactoferrin (Lf) is an iron-binding milk glycoprotein that promotes the growth of selected probiotic strains. The effect of Lf on the growth and diversification of intestinal microbiota may have an impact on several issues, including (i) strengthening the permeability of the epithelial cell monolayer, (ii) favoring the microbial antagonism that discourages the colonization and proliferation of enteric pathogens, (iii) enhancing the growth and maturation of cell-monolayer components and gut nerve fibers, and (iv) providing signals to balance the anti- and pro-inflammatory responses resulting in gut homeostasis. Given the beneficial role of probiotics, this contribution aims to review the current properties of bovine and human Lf and their derivatives in in vitro probiotic growth and Lf interplay with microbiota described in the piglet model. By using Lf as a component in pharmacological products, we may enable novel strategies that promote probiotic growth while conferring antimicrobial activity against multidrug-resistant microorganisms that cause life-threatening diseases, especially in neonates.


2021 ◽  
Vol 22 (15) ◽  
pp. 8255
Author(s):  
Samantha L. Cooper ◽  
Eleanor Boyle ◽  
Sophie R. Jefferson ◽  
Calum R. A. Heslop ◽  
Pirathini Mohan ◽  
...  

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin–Angiotensin–Aldosterone System (RAAS) and Kinin–Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.


PLoS Biology ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. e3000959
Author(s):  
Nicholas Fraser ◽  
Liam Brierley ◽  
Gautam Dey ◽  
Jessica K. Polka ◽  
Máté Pálfy ◽  
...  

The world continues to face a life-threatening viral pandemic. The virus underlying the Coronavirus Disease 2019 (COVID-19), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has caused over 98 million confirmed cases and 2.2 million deaths since January 2020. Although the most recent respiratory viral pandemic swept the globe only a decade ago, the way science operates and responds to current events has experienced a cultural shift in the interim. The scientific community has responded rapidly to the COVID-19 pandemic, releasing over 125,000 COVID-19–related scientific articles within 10 months of the first confirmed case, of which more than 30,000 were hosted by preprint servers. We focused our analysis on bioRxiv and medRxiv, 2 growing preprint servers for biomedical research, investigating the attributes of COVID-19 preprints, their access and usage rates, as well as characteristics of their propagation on online platforms. Our data provide evidence for increased scientific and public engagement with preprints related to COVID-19 (COVID-19 preprints are accessed more, cited more, and shared more on various online platforms than non-COVID-19 preprints), as well as changes in the use of preprints by journalists and policymakers. We also find evidence for changes in preprinting and publishing behaviour: COVID-19 preprints are shorter and reviewed faster. Our results highlight the unprecedented role of preprints and preprint servers in the dissemination of COVID-19 science and the impact of the pandemic on the scientific communication landscape.


2013 ◽  
Vol 5 (4) ◽  
pp. 576-581 ◽  
Author(s):  
Teresa Chan ◽  
Kameron Sabir ◽  
Sarila Sanhan ◽  
Jonathan Sherbino

Abstract Background Communicating with colleagues is a key physician competency. Yet few studies have sought to uncover the complex nature of relationships between referring and consulting physicians, which may be affected by the inherent relationships between the participants. Objective Our study examines themes identified from discussions about communications and the role of relationships during the referral-consultation process. Methods From March to September 2010, 30 residents (10 emergency medicine, 10 general surgery, 10 internal medicine) were interviewed using a semistructured focus group protocol. Two investigators independently reviewed the transcripts using inductive methods and grounded theory to generate themes (using codes for ease of analysis) until saturation was reached. Disagreements were resolved by consensus, yielding an inventory of themes and subthemes. Measures for ensuring trustworthiness of the analysis included generating an audit trail and external auditing of the material by investigators not involved with the initial analysis. Results Two main relationship-related themes affected the referral-consultation process: familiarity and trust. Various subthemes were further delineated and studied in the context of pertinent literature. Conclusions Relationships between physicians have a powerful influence on the emergency department referral-consultation dynamic. The emergency department referral-consultation may be significantly altered by the familiarity and perceived trustworthiness of the referring and consulting physicians. Our proposed framework may further inform and improve instructional methods for teaching interpersonal communication. Most importantly, it may help junior learners understand inherent difficulties they may encounter during the referral process between emergency and consulting physicians.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. LBA-3-LBA-3
Author(s):  
Yujin Zhang ◽  
Vladimir Berka ◽  
Wei Wang ◽  
Weiru Zhang ◽  
Chen Ning ◽  
...  

Abstract Abstract LBA-3 Sickle cell disease (SCD) is a debilitating hemolytic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was first identified a century ago, we still lack effective mechanism-based safe therapies to treat this disease. Thus, identification of specific molecules triggering sickling, the central pathogenic process of the disease, is extremely important to advance our understanding of the molecular basis for the pathogenesis of SCD and to develop novel therapeutics. Using non-biased metabolomic screening, we found that sphingosine-1-phosphate (S1P) is significantly elevated in the blood of SCD mice. Further analysis revealed that the activity of sphingosine kinase 1 (Sphk1, the enzyme that produces S1P) is significantly elevated in erythrocytes of SCD mice. Chronic treatment of SCD mice with a SphK1 inhibitor significantly attenuated sickling, hemolysis, inflammation and multiple tissue damage by reducing erythrocyte and plasma S1P levels. Erythrocyte S1P levels were further elevated following hypoxia/reoxygenation-induced acute sickle crisis (ASC) in SCD mice and blocking its elevation by a Sphk1 specific inhibitor significantly reduced hallmark features associated with ASC. As with SCD mice, we found that erythrocyte Sphk1 activity and erythrocyte and plasma S1P levels were significantly elevated in humans with SCD compared to normal individuals. Inhibition of SphK1 in cultured primary human erythrocytes isolated from SCD patients inhibited hypoxia-induced elevation of erythrocyte S1P levels and reduced sickling. Thus, we have revealed for the first time that SphK1-mediated S1P elevation in SCD erythrocytes is a key contributor to sickling in SCD and that Sphk1 inhibition can attenuate both acute and chronic sickling events and disease progression. S1P is an important signaling molecule regulating diverse biological processes. Although S1P is predominantly produced and stored in RBCs, nothing was known about the physiological role of S1P in normal RBCs or the pathophysiological role of S1P in SCD until we conducted a metabolomic screen. In an effort to determine the molecular mechanism underlying S1P-induced sickling, we unexpectedly found that S1P directly binds with Hb and results in a reduced Hb-O2 affinity. This finding led us to further discover that 2,3-diphosphoglycerate, another erythrocyte specific allosteric modulator, is required for S1P-mediated allosteric modulation and that these two endogenous heterotropic modulators work cooperatively to induce a substantial reduction in Hb-O2 affinity. Supporting the biochemical and functional findings, molecular modeling predicts that S1P binds near the water filled central cavity of HbA at a site that is different from the Hb-2,3-DPG binding site. Thus, our discovery adds a significant new chapter to erythrocyte physiology by revealing S1P is a novel allosteric modulator of Hb-O2 affinity and also providing a mechanism underlying S1P-mediated sickling by promoting the formation of deoxyHbS. Thus, the work reported here could be the foundation leading to future human trials and a possible therapy for SCD, a life-threatening hemolytic disorder for which the current treatment is extremely limited. The significance of our findings extends well beyond SCD. Our findings reveal a previously unrecognized important role for S1P in erythrocyte physiology and indicate a new concept for the regulation of O2 release from Hb under normal and sickle cell disease conditions. For SCD, elevated S1P is detrimental because reduced Hb-O2 affinity leads to more deoxygenation of HbS, increased sickling and subsequent multiple life-threatening complications. However, for normal erythrocytes, elevated S1P is likely beneficial by decreasing Hb-O2 affinity allowing for more O2 release to hypoxic tissues. Thus, for humans with normal Hb, if elevated S1P can induce O2 release to hypoxic tissues it may be a novel therapeutic target for a range of disorders, from chronic heart failure to diabetic retinopathy, traumatic blood loss, pulmonary disease and even cancer. In this way our findings reveal important novel opportunities to treat and prevent not only SCD but also multiple cardiovascular and pulmonary diseases associated with hypoxia. Thus, the impact of our novel finding is significant and enormous. Disclosures: No relevant conflicts of interest to declare.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 768
Author(s):  
Fatime Hawchar ◽  
Cristina Rao ◽  
Ali Akil ◽  
Yatin Mehta ◽  
Christopher Rugg ◽  
...  

Hemodynamic instability due to dysregulated host response is a life-threatening condition requiring vasopressors and vital organ support. Hemoadsorption with Cytosorb has proven to be effective in reducing cytokines and possibly in attenuating the devastating effects of the cytokine storm originating from the immune over-response to the initial insult. We reviewed the PubMed database to assess evidence of the impact of Cytosorb on norepinephrine needs in the critically ill. We further analyzed those studies including data on control cohorts in a comparative pooled analysis, defining a treatment effect as the standardized mean differences in relative reductions in vasopressor dosage at 24 h. The literature search returned 33 eligible studies. We found evidence of a significant reduction in norepinephrine requirement after treatment: median before, 0.55 (IQR: 0.39–0.90); after, 0.09 (0.00–0.25) μg/kg/min, p <0.001. The pooled effect size at 24 h was large, though characterized by high heterogeneity. In light of the importance of a quick resolution of hemodynamic instability in the critically ill, further research is encouraged to enrich knowledge on the potentials of the therapy.


Sign in / Sign up

Export Citation Format

Share Document