scholarly journals Production of silver nanoparticles via green method using banana raja peel extract as a reducing agent

2020 ◽  
Vol 5 (2) ◽  
pp. 112-118
Author(s):  
Achmad Chafidz ◽  
Amira Rahmani Afandi ◽  
Bunga Mela Rosa ◽  
Pratikno Hidayat ◽  
Harri Junaedi

In this study, biosynthesis of silver nanoparticles using the extract of a local banana peel (variant name: Raja) as bio-reductor was carried out. This study aimed to determine the effect of two different ratios of Banana Peel Extract (BPE)/distilled water on the synthesis of silver nanoparticles. The two of BPE/water ratios were 1% (v/v) and 5%(v/v), named as Sample A and Sample B, respectively. Whereas, the concentrations of AgNO3 solution as the precursor were varied as follows: 0.125; 0.1; 0.075; and 0.05 M. The synthesized colloidal silver nanoparticles were characterized using a UV-Vis spectrometer, while the BPE solution was analyzed using Fourier Transform Infra-Red (FT-IR) to study its functional groups. While, the solid silver nanoparticles was characterized using a Scanning Electron Microscopy (SEM) with an Energy-dispersive X-ray spectroscopy (EDX) analysis. The UV-Vis spectrometer results qualitatively showed that sample A produced better silver nanoparticles than that of sample B. All samples showed absorbance peaks at wavelength of 450 nm. It was found that the highest absorbance value (i.e. 1.59) occurred at sample A with a concentration of AgNO3 solution 0.1 M. Additionally, FT-IR analysis result showed the presence of a hydroxyl group specifically for alcohols as phenols, which indicated the possibility of polyphenol compounds. The SEM micrograph showed that some of the silver nanoparticles were in the shape of tetrahedron or triangular like particle and spherical The SEM image analysis results using ImageJ software showed that most of the silver nanoparticles produced had the size of 100-300 nm. Furthermore, the EDX analysis result showed a peak count at 3 keV, which confirmed the formation of silver nanoparticles.

2021 ◽  
Vol 872 ◽  
pp. 61-66
Author(s):  
Hidayat Pratikno ◽  
Pramita Basuki Anggya ◽  
Febrianti Fadhila ◽  
Achmad Chafidz ◽  
Dyah Pita Rengga Wara

This study focuses on the biosynthesis of silver nanoparticles using Banana Raja (Musa Paradisiaca Var. Raja) peel extract. The aim is to determine the effect of concentration differences of silver nitrate (AgNO3) as the precursor on the production of silver nanoparticles. In this study, banana peel extract (BPE) was reacted with AgNO3 solution at several concentrations of silver nitrate solution i.e. 0.125; 0.1; 0.075 and 0.05 M at temperature of 50 °C. The ratio of banana peel extract and AgNO3 solution used was 5:500 (v/v). The stirring was done by using a magnetic stirrer. The reaction took place when the color of the mixture (extract and AgNO3) changed until the color of the mixture became constant. The results of the colloidal silver nanoparticles were characterized using UV-Vis Spectrometer, while the functional groups of the banana extract was analyzed using a Fourier Transform Infra-Red (FT-IR) apparatus. Whereas, the morphology of the silver nanoparticles was studied using a Scanning Electron Microscopy (SEM). The UV-Vis Spectrometer result show that the concentration of AgNO3 which gave the highest absorbance value was at 0.1 M. The SEM micrographs could not clearly show the difference in the morphology of silver nanoparticles samples at different concentrations of AgNO3 solution.


2018 ◽  
Vol 17 (2) ◽  
pp. 77 ◽  
Author(s):  
Wara Dyah Pita Rengga ◽  
Dhimas Setiawan ◽  
Khosiatun Khosiatun

Biosynthesis and silver nanoparticles formation during the reduction of AgNO3were carried out by using an aqueous peel extract of banana kepok (Musa balbisiana) asa stabilizing agent. The formation of the stable silver nanoparticles with differentconcentration of AgNO3 has resulted in mostly spherical particles. The Ultraviolet-Visiblespectrophotometer, Transmission Electron Microscopy, X-Ray Diffractometer were usedto characterize these biosynthesized silver nanoparticles. The spherical shapednanoparticles were uniformly distributed with the range diameter of 5 to 50 nm and theparticles were naturally crystallized with the crystal structure of the face-centered cubicgeometry. Additionally, the kinetics of the formation process of silver nanoparticles wasobserved by the UV-Vis spectrophotometer. Based on the kinetic functions, the reductionprocess of banana peel extract had a constant formation rate of the autocatalytic processat 4.35 x 10-4/s.


2021 ◽  
Vol 2 (01) ◽  
pp. 75-82
Author(s):  
Sharmila Pradhan Amatya ◽  
Santu Shrestha ◽  
Yadav Aryal

This research mainly aims at implementing green approach for synthesizing multifunctional manganese nanoparticles (MnNPs) using aqueous extract of banana peel (Musa paradiasca) and potassium permanganate (KMnO4) as the precursor. As synthesized MnNPs were confirmed initially by a color change and later on characterized by UV-visible (UV-vis) Spectrophotometer, Energy Dispersive Spectroscopy (EDX), X-ray Diffraction Spectroscopy (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Green approach was carried at various parameters like concentration of precursor solution, reaction time, temperature, etc for optimization. The formation of MnNPs was confirmed by the presence of surface plasmon absorbance band  (450 nm) and band at 6 and 6.5 keV of EDX spectrum. Likewise, so formed MnNPs were crystalline nature depicted from the sharp peak observed at 28.5º and 41° in X-ray diffraction pattern. Various types of biomolecules associated with the banana peel extract acting as natural reducer and stabilizer were analyzed from characteristic absorption bands present in the FT-IR spectrum.


Author(s):  
Ashok Bankar ◽  
Bhagyashree Joshi ◽  
Ameeta Ravi Kumar ◽  
Smita Zinjarde

Author(s):  
Sankar S ◽  
Ganga Krishnan

The green synthesis of nanomaterials is becoming much popular as a result of worldwide problems associated with environmental concerns. In the present work, leaf extract of Barbadensis Miller, (commonly known as Aloe vera) was used for bio-reduction of silver ions to silver nanoparticles. Aloe vera extract and AgNO3 solution in different volumes were treated and it resulted in the reduction of Ag+ ions to Ag metal atoms, which further accumulated as Ag nanoparticles. The prepared nanoparticles were characterized by UV-vis spectroscopy, SEM, FT-IR spectroscopy and XRD analysis. The present study established that the shape and size of the silver nanoparticles can be effectively controlled and modulated using green synthesis technique. The scope of the prepared particles for anti-microbial applications were also investigated.


2020 ◽  
Vol 13 (4) ◽  
pp. 66 ◽  
Author(s):  
Marimuthu alias Antonysamy Johnson ◽  
Thangaiah Shibila ◽  
Santhanam Amutha ◽  
Irwin R. A. Menezes ◽  
José G. M. da Costa ◽  
...  

The present study was aimed to synthesize silver nanoparticles (AgNPs) from the aqueous extracts of Odontosoria chinensis (L.) J. Sm. and the synthesized AgNPs were examined for their biopotentials. The Odontosoria chinensis extracts were added to 1 mM AgNO3 solution with different ratios viz., 0.5:9.5, 1:9, 1.5:8.5 and 2:8 ratios for the reduction of Ag ions. After reduction, the AgNPs of Odontosoria chinensis were analyzed spectroscopically for further confirmation. The synthesized AgNPs of Odontosoria chinensis were characterized by pH, ultra violet–visible spectroscopy (UV-Vis), Fourier transform–infra red spectroscopy (FT-IR), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDAX) and X-Ray diffraction (XRD). The time taken for the complete reduction of Silver (Ag) in solution to nanoparticle was 10 min. The O. chinensis aqueous extracts mediated silver nanoparticles showed a broad peak with distinct absorption at around 400–420 nm and confirmed the silver nanoparticle formation. FT-IR results also confirmed the existence of organic materials in the silver nanoparticles of O. chinensis. The EDX spectra of AgNPs of O. chinenesis revealed the occurrence of a strong Ag peak. The synthesis of AgNPs of O. chinenesis was confirmed with the existence of a peak at 46.228°. The toxic potential of AgNPs of O. chinenesis showed varied percentage mortality with the LC50 values of 134.68 μL/ 50 mL and 76.5 μL/50 mL, respectively. The anti-inflammatory and anti-diabetic activities of aqueous and AgNPs of O. chinenesis were statistically significant at p < 0.05 level. Conclusion: The results demonstrated the toxicity, anti-diabetic and anti-inflammatory potential of the studied AgNPs. The synthesized nanoparticles of Odontosoria chinensis could be tested as an alternative to anticancer, anti-diabetic and anti-inflammatory drugs.


2020 ◽  
Vol 30 (9) ◽  
pp. 3702-3708
Author(s):  
Thalita Fonseca Araujo ◽  
Tatiane Melo Pereira ◽  
Lucio Assis Araujo Neto ◽  
Cínthia Caetano Bonatto ◽  
Luciano Paulino Silva

2021 ◽  
Vol 7 (1) ◽  
pp. 12-20
Author(s):  
Athiah Masykuroh ◽  
Nadia Nia Nurulita

Nowadays silver nanoparticles (AgNPs) synthesized so often by plant extracts as a reductor. The synthesis of AgNPs was carried out by Citrus microcarpa Bunge fruit peel extract a reductor in various extract concentrations (10, 15, and 20%), concentration of AgNO3 solution of 0.15M and temperature of 700C. The presence of AgNPs was determined by color test and the formation of Surface Plasmon Resonance (SPR) using UV-Vis Spectrophotometer while to determine the morphology and size of the nanoparticles using Scanning Electron  Microscope (SEM). The results of the analysis showed that AgNPs was formed at colloidal phase with dark brown color with wavelengths of 457.30 nm, 478.90 nm, and 422.80 nm for variation concentration of 10, 15 and 20% with slightly spherical, slightly elongated and jagged morphology with average size of 253.8 nm (10%), 254.2 nm (15%) and 253.9 nm (20%).


Sign in / Sign up

Export Citation Format

Share Document