scholarly journals Genetically Engineered Probiotics and Therapies Applications

Bionatura ◽  
2019 ◽  
Vol 02 (Bionatura Conference Serie) ◽  
Author(s):  
Maldonado C. Stephanie ◽  
Jijón V. Santiago

The idea of using probiotics for health benefits in the human body is still biased since there is skepticism and since it is quite a new field of research. However, recent experiments are trying to debate that given the naturality of their consumption and the successful results from in vitro tests in combination with other therapies. Food scientists are eager to take advantage of the known beneficial properties of probiotics by using engineering technologies in order to enhance them. Using CRISPR systems present in lactobacilli aids in strain identification, while offering information on phylogeny and ecological interactions. Also, the use of genetic engineering tools could also allow the use of plasmid vaccines to prevent antibiotic resistance and the development of synthetic probiotics as microbial treatments.

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 733
Author(s):  
Jessica L. Spears ◽  
Richard Kramer ◽  
Andrey I. Nikiforov ◽  
Marisa O. Rihner ◽  
Elizabeth A. Lambert

With the growing popularity of probiotics in dietary supplements, foods, and beverages, it is important to substantiate not only the health benefits and efficacy of unique strains but also safety. In the interest of consumer safety and product transparency, strain identification should include whole-genome sequencing and safety assessment should include genotypic and phenotypic studies. Bacillus subtilis MB40, a unique strain marketed for use in dietary supplements, and food and beverage, was assessed for safety and tolerability across in silico, in vitro, and in vivo studies. MB40 was assessed for the absence of undesirable genetic elements encoding toxins and mobile antibiotic resistance. Tolerability was assessed in both rats and healthy human volunteers. In silico and in vitro testing confirmed the absence of enterotoxin and mobile antibiotic resistance genes of safety concern to humans. In rats, the no-observed-adverse-effect level (NOAEL) for MB40 after repeated oral administration for 14 days was determined to be 2000 mg/kg bw/day (equivalent to 3.7 × 1011 CFU/kg bw/day). In a 28 day human tolerability trial, 10 × 109 CFU/day of MB40 was well tolerated. Based on genome sequencing, strain characterization, screening for undesirable attributes and evidence of safety by appropriately designed safety evaluation studies in rats and humans, Bacillus subtilis MB40 does not pose any human health concerns under the conditions tested.


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Leon Radziemski ◽  
Arthur Denison ◽  
Floyd Dunn ◽  
Steve Bell ◽  
Eugene Cochran

In this paper, the authors report in-vitro tests of an ultrasound system and method of wirelessly transmitting significant amounts of energy into the human body for the purpose of recharging implantable batteries. We demonstrate the complete charging of Li-ion batteries with energy capacities of 35 mA h, 200 mA h, and 600 mA h through several types of animal tissue while keeping the temperature rise of the tissue and piezoelectric receiver below the desired 2°C human safety limit recommended by FDA medical device guidelines. Given these encouraging results, it is logical to conclude that the rapidly growing neurostimulator market is a desirable and appropriate target for introduction of this novel recharging method.


2021 ◽  
Vol 12 ◽  
Author(s):  
Constanca Figueiredo ◽  
Rainer Blasczyk

Patelet transfusion refractoriness remains a relevant hurdle in the treatment of severe alloimmunized thrombocytopenic patients. Antibodies specific for the human leukocyte antigens (HLA) class I are considered the major immunological cause for PLT transfusion refractoriness. Due to the insufficient availability of HLA-matched PLTs, the development of new technologies is highly desirable to provide an adequate management of thrombocytopenia in immunized patients. Blood pharming is a promising strategy not only to generate an alternative to donor blood products, but it may offer the possibility to optimize the therapeutic effect of the produced blood cells by genetic modification. Recently, enormous technical advances in the field of in vitro production of megakaryocytes (MKs) and PLTs have been achieved by combining progresses made at different levels including identification of suitable cell sources, cell pharming technologies, bioreactors and application of genetic engineering tools. In particular, use of RNA interference, TALEN and CRISPR/Cas9 nucleases or nickases has allowed for the generation of HLA universal PLTs with the potential to survive under refractoriness conditions. Genetically engineered HLA-silenced MKs and PLTs were shown to be functional and to have the capability to survive cell- and antibody-mediated cytotoxicity using in vitro and in vivo models. This review is focused on the methods to generate in vitro genetically engineered MKs and PLTs with the capacity to evade allogeneic immune responses.


2011 ◽  
Vol 81 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Joel Deneau ◽  
Taufeeq Ahmed ◽  
Roger Blotsky ◽  
Krzysztof Bojanowski

Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


1980 ◽  
Vol 44 (02) ◽  
pp. 081-086 ◽  
Author(s):  
C V Prowse ◽  
A E Williams

SummaryThe thrombogenic effects of selected factor IX concentrates were evaluated in two rabbit models; the Wessler stasis model and a novel non-stasis model. Concentrates active in either the NAPTT or TGt50 in vitro tests of potential thrombogenicity, or both, caused thrombus formation in the Wessler technique and activation of the coagulation system in the non-stasis model. A concentrate with low activity in both in vitro tests did not have thrombogenic effects in vivo, at the chosen dose. Results in the non-stasis model suggested that the thrombogenic effects of factor IX concentrates may occur by at least two mechanisms. A concentrate prepared from platelet-rich plasma and a pyrogenic concentrate were also tested and found to have no thrombogenic effect in vivo.These studies justify the use of the NAPTT and TGt50 in vitro tests for the screening of factor IX concentrates prior to clinical use.


1979 ◽  
Vol 42 (05) ◽  
pp. 1355-1367 ◽  
Author(s):  
C V Prowse ◽  
A Chirnside ◽  
R A Elton

SummaryVarious factor IX concentrates have been examined in a number of in vitro tests of thrombogenicity. The results suggest that some tests are superfluous as in concentrates with activity in any of these tests activation is revealed by a combination of the non-activated partial thromboplastin time, the thrombin (or Xa) generation time and factor VIII inhibitor bypassing activity tests. Assay of individual coagulant enzymes revealed that most concentrates contained more factor IXa than Xa. However only a small number of concentrates, chiefly those that had been purposefully activated, contained appreciable amounts of either enzyme.


1963 ◽  
Vol 10 (01) ◽  
pp. 106-119 ◽  
Author(s):  
E Beck ◽  
R Schmutzler ◽  
F Duckert ◽  

SummaryInhibitor of kallikrein and trypsin (KI) extracted from bovine parotis was compared with ε-aminocaproic acid (EACA): both substances inhibit fibrinolysis induced with streptokinase. EACA is a strong inhibitor of fibrinolysis in concentrations higher than 0, 1 mg per ml plasma. The same amount and higher concentrations are not able to inhibit completely the proteolytic-side reactions of fibrinolysis (fibrinogenolysis, diminution of factor V, rise of fibrin-polymerization-inhibitors). KI inhibits well proteolysis of plasma components in concentrations higher than 2,5 units per ml plasma. Much higher amounts of KI are needed to inhibit fibrinolysis as demonstrated by our in vivo and in vitro tests.Combination of the two substances for clinical use is suggested. Therapeutic possibilities are discussed.


2018 ◽  
Vol 8 (3) ◽  
pp. 193 ◽  
Author(s):  
Rosa Martha Perez Gutierrez ◽  
Alethia Muñiz-Ramirez ◽  
Abraham Heriberto Garcia Campoy ◽  
Jose Maria Mota Flores ◽  
Sergio Odin Flores

Background: The health benefits of edible plants have been widely investigated and disseminated. However, only polyphenols have been found to have sufficient therapeutic potential to be considered in clinical trials. Fewer manuscripts have other applications such as prospective health benefits and disease treatment. Other components of edible plants are responsible for a range of other benefits including antimalarial, burns, flu, cancer, inflammation, diabetes, glycation, antimicrobial, prevention of neurodegeneration, analgesic, antimigraine activity, sedative activities, etc. Accordingly, the public needs to be informed of the potential edible plants have to act on different targets and maintain better control over diabetes compared to commercial drugs which can be toxic, have side effects, do not have the capacity to maintain blood glucose at normal levels, and do not protect the patient from the complications of diabetes over time. Consequently, edible plants, such as Apium graveolen, which have therapeutic targets on AGEs formation, are potentially a better alternative treatment for diabetes.Methods: The leaves of celery were extracted with methanol (CM). Polyphenols contents in CM were investigated by liquid chromatography-electrospray ionization mass. The ability of the compounds to inhibit formation of AGEs was evaluated in vitro models using formation of AGE fluorescence intensity, level of fructosamine, Nε-(carboxymethyl)lysine (CML), methylglyoxal (MG)-derived protein, and formation of amyloid cross β structure. Protein-oxidation was determined by thiol group and protein carbonyl content. Inhibition of MG-derived AGEs and MG-trapping ability were also measured. Additionally, insulin production was determined in methylglyoxal-treated pancreatic RINm5F cells assay. Results: Apigenin, kaempferol, apiin, rutin, caffeic acid, ferulic acid, chlorogenic acid, coumaroylquinic acid, and p-coumaric acid were the major polyphenols contained in CM. In all the model tests CM displayed potent AGE inhibitory activity, suggesting that CM delayed the three stages of glycation. Accordingly, the mechanisms of action of celery involving dicarbonyl trapping and breaking the crosslink structure in the AGEs formed may contribute to the protection of pancreatic RINm5F cells against MG conditions.Conclusion: These findings indicate that CM have an excellent anti-glycation effect which may be beneficial for future development of antiglycating agents for the treatment of diabetes.Keywords: Apium graveolens, anti-glycation, polyphenols methylglyoxal, insulin, pancreatic cells


Sign in / Sign up

Export Citation Format

Share Document