scholarly journals The P Value Line Dance: When Does the Music Stop?

10.2196/21345 ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. e21345 ◽  
Author(s):  
Marcus Bendtsen

When should a trial stop? Such a seemingly innocent question evokes concerns of type I and II errors among those who believe that certainty can be the product of uncertainty and among researchers who have been told that they need to carefully calculate sample sizes, consider multiplicity, and not spend P values on interim analyses. However, the endeavor to dichotomize evidence into significant and nonsignificant has led to the basic driving force of science, namely uncertainty, to take a back seat. In this viewpoint we discuss that if testing the null hypothesis is the ultimate goal of science, then we need not worry about writing protocols, consider ethics, apply for funding, or run any experiments at all—all null hypotheses will be rejected at some point—everything has an effect. The job of science should be to unearth the uncertainties of the effects of treatments, not to test their difference from zero. We also show the fickleness of P values, how they may one day point to statistically significant results; and after a few more participants have been recruited, the once statistically significant effect suddenly disappears. We show plots which we hope would intuitively highlight that all assessments of evidence will fluctuate over time. Finally, we discuss the remedy in the form of Bayesian methods, where uncertainty leads; and which allows for continuous decision making to stop or continue recruitment, as new data from a trial is accumulated.

2020 ◽  
Author(s):  
Marcus Bendtsen

UNSTRUCTURED When should a trial stop? Such a seemingly innocent question evokes concerns of type I and II errors among those who believe that certainty can be the product of uncertainty and among researchers who have been told that they need to carefully calculate sample sizes, consider multiplicity, and not spend <i>P</i> values on interim analyses. However, the endeavor to dichotomize evidence into significant and nonsignificant has led to the basic driving force of science, namely uncertainty, to take a back seat. In this viewpoint we discuss that if testing the null hypothesis is the ultimate goal of science, then we need not worry about writing protocols, consider ethics, apply for funding, or run any experiments at all—all null hypotheses will be rejected at some point—everything has an effect. The job of science should be to unearth the uncertainties of the effects of treatments, not to test their difference from zero. We also show the fickleness of <i>P</i> values, how they may one day point to statistically significant results; and after a few more participants have been recruited, the once statistically significant effect suddenly disappears. We show plots which we hope would intuitively highlight that all assessments of evidence will fluctuate over time. Finally, we discuss the remedy in the form of Bayesian methods, where uncertainty leads; and which allows for continuous decision making to stop or continue recruitment, as new data from a trial is accumulated.


2019 ◽  
Author(s):  
Estibaliz Gómez-de-Mariscal ◽  
Alexandra Sneider ◽  
Hasini Jayatilaka ◽  
Jude M. Phillip ◽  
Denis Wirtz ◽  
...  

ABSTRACTBiomedical research has come to rely on p-values to determine potential translational impact. The p-value is routinely compared with a threshold commonly set to 0.05 to assess the significance of the null hypothesis. Whenever a large enough dataset is available, this threshold is easily reachable. This phenomenon is known as p-hacking and it leads to spurious conclusions. Herein, we propose a systematic and easy-to-follow protocol that models the p-value as an exponential function to test the existence of real statistical significance. This new approach provides a robust assessment of the null hypothesis with accurate values for the minimum data-size needed to reject it. An in-depth study of the model is carried out in both simulated and experimentally-obtained data. Simulations show that under controlled data, our assumptions are true. The results of our analysis in the experimental datasets reflect the large scope of this approach in common decision-making processes.


PEDIATRICS ◽  
1989 ◽  
Vol 84 (6) ◽  
pp. A30-A30
Author(s):  
Student

Often investigators report many P values in the same study. The expected number of P values smaller than 0.05 is 1 in 20 tests of true null hypotheses; therefore the probability that at least one P value will be smaller than 0.05 increases with the number of tests, even when the null hypothesis is correct for each test. This increase is known as the "multiple-comparisons" problem...One reasonable way to correct for multiplicity is simply to multiply the P value by the number of tests. Thus, with five tests, an orignal 0.05 level for each is increased, perhaps to a value as high as 0.25 for the set. To achieve a level of not more than 0.05 for the set, we need to choose a level of 0.05/5 = 0.01 for the individual tests. This adjustment is conservative. We know only that the probability does not exceed 0.05 for the set.


1996 ◽  
Vol 1 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Martin A. Weinstock

Background: Accurate understanding of certain basic statistical terms and principles is key to critical appraisal of published literature. Objective: This review describes type I error, type II error, null hypothesis, p value, statistical significance, a, two-tailed and one-tailed tests, effect size, alternate hypothesis, statistical power, β, publication bias, confidence interval, standard error, and standard deviation, while including examples from reports of dermatologic studies. Conclusion: The application of the results of published studies to individual patients should be informed by an understanding of certain basic statistical concepts.


Author(s):  
Abhaya Indrayan

Background: Small P-values have been conventionally considered as evidence to reject a null hypothesis in empirical studies. However, there is widespread criticism of P-values now and the threshold we use for statistical significance is questioned.Methods: This communication is on contrarian view and explains why P-value and its threshold are still useful for ruling out sampling fluctuation as a source of the findings.Results: The problem is not with P-values themselves but it is with their misuse, abuse, and over-use, including the dominant role they have assumed in empirical results. False results may be mostly because of errors in design, invalid data, inadequate analysis, inappropriate interpretation, accumulation of Type-I error, and selective reporting, and not because of P-values per se.Conclusion: A threshold of P-values such as 0.05 for statistical significance is helpful in making a binary inference for practical application of the result. However, a lower threshold can be suggested to reduce the chance of false results. Also, the emphasis should be on detecting a medically significant effect and not zero effect.


2017 ◽  
Vol 27 (12) ◽  
pp. 3560-3576 ◽  
Author(s):  
Albert Vexler ◽  
Jihnhee Yu ◽  
Yang Zhao ◽  
Alan D Hutson ◽  
Gregory Gurevich

Many statistical studies report p-values for inferential purposes. In several scenarios, the stochastic aspect of p-values is neglected, which may contribute to drawing wrong conclusions in real data experiments. The stochastic nature of p-values makes their use to examine the performance of given testing procedures or associations between investigated factors to be difficult. We turn our focus on the modern statistical literature to address the expected p-value (EPV) as a measure of the performance of decision-making rules. During the course of our study, we prove that the EPV can be considered in the context of receiver operating characteristic (ROC) curve analysis, a well-established biostatistical methodology. The ROC-based framework provides a new and efficient methodology for investigating and constructing statistical decision-making procedures, including: (1) evaluation and visualization of properties of the testing mechanisms, considering, e.g. partial EPVs; (2) developing optimal tests via the minimization of EPVs; (3) creation of novel methods for optimally combining multiple test statistics. We demonstrate that the proposed EPV-based approach allows us to maximize the integrated power of testing algorithms with respect to various significance levels. In an application, we use the proposed method to construct the optimal test and analyze a myocardial infarction disease dataset. We outline the usefulness of the “EPV/ROC” technique for evaluating different decision-making procedures, their constructions and properties with an eye towards practical applications.


2021 ◽  
Author(s):  
Taavi Päll ◽  
Hannes Luidalepp ◽  
Tanel Tenson ◽  
Ülo Maiväli

AbstractHere we assess reproducibility and inferential quality in the field of differential HT-seq, based on analysis of datasets submitted 2008-2019 to the NCBI GEO data repository. Analysis of GEO submission file structures places an overall 59% upper limit to reproducibility. We further show that only 23% of experiments resulted in theoretically expected p value histogram shapes, although both reproducibility and p value distributions show marked improvement over time. Uniform p value histogram shapes, indicative of <100 true effects, were extremely few. Our calculations of π0, the fraction of true nulls, showed that 36% of experiments have π0 <0.5, meaning that in over a third of experiments most RNA-s were estimated to change their expression level upon experimental treatment. Both the fraction of different p value histogram types and π0 values are strongly associated with the software used for calculating these p values by the original authors, indicating widespread bias.


Author(s):  
David McGiffin ◽  
Geoff Cumming ◽  
Paul Myles

Null hypothesis significance testing (NHST) and p-values are widespread in the cardiac surgical literature but are frequently misunderstood and misused. The purpose of the review is to discuss major disadvantages of p-values and suggest alternatives. We describe diagnostic tests, the prosecutor’s fallacy in the courtroom, and NHST, which involve inter-related conditional probabilities, to help clarify the meaning of p-values, and discuss the enormous sampling variability, or unreliability, of p-values. Finally, we use a cardiac surgical database and simulations to explore further issues involving p-values. In clinical studies, p-values provide a poor summary of the observed treatment effect, whereas the three- number summary provided by effect estimates and confidence intervals is more informative and minimises over-interpretation of a “significant” result. P-values are an unreliable measure of strength of evidence; if used at all they give only, at best, a very rough guide to decision making. Researchers should adopt Open Science practices to improve the trustworthiness of research and, where possible, use estimation (three-number summaries) or other better techniques.


Methodology ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 44-51 ◽  
Author(s):  
José Manuel Caperos ◽  
Ricardo Olmos ◽  
Antonio Pardo

Abstract. Correlation analysis is one of the most widely used methods to test hypotheses in social and health sciences; however, its use is not completely error free. We have explored the frequency of inconsistencies between reported p-values and the associated test statistics in 186 papers published in four Spanish journals of psychology (1,950 correlation tests); we have also collected information about the use of one- versus two-tailed tests in the presence of directional hypotheses, and about the use of some kind of adjustment to control Type I errors due to simultaneous inference. Reported correlation tests (83.8%) are incomplete and 92.5% include an inexact p-value. Gross inconsistencies, which are liable to alter the statistical conclusions, appear in 4% of the reviewed tests, and 26.9% of the inconsistencies found were large enough to bias the results of a meta-analysis. The election of one-tailed tests and the use of adjustments to control the Type I error rate are negligible. We therefore urge authors, reviewers, and editorial boards to pay particular attention to this in order to prevent inconsistencies in statistical reports.


Author(s):  
Richard McCleary ◽  
David McDowall ◽  
Bradley J. Bartos

Chapter 6 addresses the sub-category of internal validity defined by Shadish et al., as statistical conclusion validity, or “validity of inferences about the correlation (covariance) between treatment and outcome.” The common threats to statistical conclusion validity can arise, or become plausible through either model misspecification or through hypothesis testing. The risk of a serious model misspecification is inversely proportional to the length of the time series, for example, and so is the risk of mistating the Type I and Type II error rates. Threats to statistical conclusion validity arise from the classical and modern hybrid significance testing structures, the serious threats that weigh heavily in p-value tests are shown to be undefined in Beyesian tests. While the particularly vexing threats raised by modern null hypothesis testing are resolved through the elimination of the modern null hypothesis test, threats to statistical conclusion validity would inevitably persist and new threats would arise.


Sign in / Sign up

Export Citation Format

Share Document