scholarly journals Defining surfaces : Implant topography – a review (Preprint)

2018 ◽  
Author(s):  
Preeti Satheesh Kumar ◽  
Vyoma Venkatesh Grandhi ◽  
Vrinda Gupta

BACKGROUND . A variety of claims are made regarding the effects of surface topography on implant osseointegration. The development of implant surfaces topography has been empirical, requiring numerous in vitro and in vivo tests. Most of these tests were not standardized, using different surfaces, cell populations or animal models. The exact role of surface chemistry and topography on the early events of the osseointegration of dental implants remain poorly understood. OBJECTIVE This review considers the major claims made concerning the effects of titanium implant surface topography on osseointegration. The osseointegration rate of titanium dental implants is related to their composition and surface roughness. The different methods used for increasing surface roughness or applying osteoconductive coatings to titanium dental implants are reviewed. Important findings of consensus are highlighted, and existing controversies are revealed. METHODS This review considers many of the research publications listed in MEDLINE and presented in biomedical research publications and textbooks. Surface treatments, such as titanium plasma-spraying, grit-blasting acid-etching,alkaline etching, anodization,polymer demixing ,sol gel conversion and their corresponding surface morphologies and properties are described. RESULTS Many in vitro evaluations are not predictive of or correlated with in vivo outcomes. In some culture models, increased surface topography positively affects pro-osteogenic cellular activities. Many studies reveal increase in bone-to-implant contact,with increased surface topography modifications on implant surfaces. CONCLUSIONS Increased implant surface topography improves the bone-to-implant contact and the mechanical properties of the enhanced interface.

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7076
Author(s):  
Christian Flörke ◽  
Anne-Katrin Eisenbeiß ◽  
Ulla Metz ◽  
Aydin Gülses ◽  
Yahya Acil ◽  
...  

Background and Objectives: The aim of the current study was to establish an osseo-disintegration model initiated with a single microorganism in mini-pigs. Materials and Methods: A total of 36 titanium dental implants (3.5 mm in diameter, 9.5 mm in length) was inserted into frontal bone (n: 12) and the basis of the corpus mandible (n: 24). Eighteen implants were contaminated via inoculation of Enterococcus faecalis. Six weeks after implant insertion, bone-to-implant contact (BIC) ratio, interthread bone density (ITBD), and peri-implant bone density (PIBD) were examined. In addition to that, new bone formation was assessed via fluorescence microscopy, histomorphometry, and light microscopical examinations. Results: Compared to the sterile implants, the contaminated implants showed significantly reduced BIC (p < 0.001), ITBD (p < 0.001), and PBD (p < 0.001) values. Around the sterile implants, the green and red fluorophores were overlapping and surrounding the implant without gaps, indicating healthy bone growth on the implant surface, whereas contaminated implants were surrounded by connective tissue. Conclusions: The current experimental model could be a feasible option to realize a significant alteration of dental-implant osseointegration and examine novel surface decontamination techniques without impairing local and systemic inflammatory complications.


Author(s):  
Karthikeyan Subramani

This manuscript reviews about titanium surface modification techniques for its application in orthopaedic and dental implants. There are a few limitations in the long term prognosis of orthopaedic and dental implants. Poor osseointegration with bone, periimplant infection leading to implant failure and short term longevity demanding revision surgery, are to mention a few. Micro- and nanoscale modification of titanium surface using physicochemical, morphological and biochemical approaches have resulted in higher bone to implant contact ratio and improved osseointegration. With recent advances in micro, nano-fabrication techniques and multidisciplinary research studies focusing on bridging biomaterials for medical applications, TiO2 nanotubes have been extensively studied for implant applications. The need for titanium implant surface that can closely mimic the nanoscale architecture of human bone has become a priority. For such purpose, TiO2 nanotubes of different dimensions and architectural fashions at the nanoscale level are being evaluated. This manuscript discusses in brief about the in-vitro and in-vivo studies on titanium surface modification techniques. This manuscript also addresses the recent studies done on such nanotubular surfaces for the effective delivery of osteoinductive growth factors and anti bacterial/ anti inflammatory drugs to promote osseointegration and prevent peri-implant infection.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1035
Author(s):  
Mohammed E. Sayed ◽  
Maryam H. Mugri ◽  
Mazen A. Almasri ◽  
Manea Musa Al-Ahmari ◽  
Shilpa Bhandi ◽  
...  

Dental implants are a widely used treatment modality for oral rehabilitation. Implant failures can be a result of many factors, with poor osseointegration being the main culprit. The present systematic review aimed to assess the effect of stem cells on the osseointegration of dental implants. An electronic search of the MEDLINE, LILACS, and EMBASE databases was conducted. We examined quantitative preclinical studies that reported on the effect of mesenchymal stem cells on bone healing after implant insertion. Eighteen studies that fulfilled the inclusion criteria were included. Various surface modification strategies, sites of placement, and cell origins were analyzed. The majority of the selected studies showed a high risk of bias, indicating that caution must be exercised in their interpretation. All the included studies reported that the stem cells used with graft material and scaffolds promoted osseointegration with higher levels of new bone formation. The mesenchymal cells attached to the implant surface facilitated the expression of bio-functionalized biomaterial surfaces, to boost bone formation and osseointegration at the bone–implant interfaces. There was a promotion of osteogenic differentiation of human mesenchymal cells and osseointegration of biomaterial implants, both in vitro and in vivo. These results highlight the significance of biomodified implant surfaces that can enhance osseointegration. These innovations can improve the stability and success rate of the implants used for oral rehabilitation.


2008 ◽  
Vol 47-50 ◽  
pp. 467-470 ◽  
Author(s):  
Yeon Wook Kim

The osseointegration capability of titanium dental implants is related to their chemical composition and surface roughness. In this study, the combination of grit-blasting and micro-arc oxidation had been used for producing the improved implant surfaces. The ceramic particles were projected to titanium dental implants through a nozzle at high velocity by means of compressed air to get high surface roughness. Then the surface of titanium implants was modified by micro-arc oxidation treatment. The current density, frequency and duty were 50-300 mA/cm2, 100 Hz, and 50%, respectively. A porous TiO2 layer was formed on the surface after the oxidation treatment. The surface structure of oxidized implants exhibited nanometer-sized pores with an average diameter of 0.2 µm. The TiO2 passive layer of the implant surface can attribute to the excellent biocompatibility. The high roughness (Ra=0.182 µm) formed by grit-blasting maximizes the interlocking between mineralized bone and the surface of the implant. Surface roughness in the manometer range formed by micro-arc oxidation treatment would play an important role in the adsorption of proteins, adhesion of osteoblastic cell and thus the rate of osseointegration.


2019 ◽  
Vol 20 (13) ◽  
pp. 3267 ◽  
Author(s):  
Eugenio Velasco-Ortega ◽  
Ivan Ortiz-García ◽  
Alvaro Jiménez-Guerra ◽  
Loreto Monsalve-Guil ◽  
Fernando Muñoz-Guzón ◽  
...  

The surface modifications of titanium dental implants play important roles in the enhancement of osseointegration. The objective of the present study was to test two different implant surface treatments on a rabbit model to investigate the osseointegration. The tested surfaces were: a) acid-etched surface with sandblasting treatment (SA) and b) an oxidized implant surface (OS). The roughness was measured by an interferometeric microscope with white light and the residual stress of the surfaces was measured with X-ray residual stress Bragg–Bentano diffraction. Six New Zealand white rabbits were used for the in vivo study. Implants with the two different surfaces (SA and OS) were inserted in the femoral bone. After 12 weeks of implantation, histological and histomorphometric analyses of the blocks containing the implants and the surrounding bone were performed. All the implants were correctly implanted and no signs of infection were observed. SA and OS surfaces were both surrounded by newly formed trabeculae. Histomorphometric analysis revealed that the bone–implant contact % (BIC) was higher around the SA implants (53.49 ± 8.46) than around the OS implants (50.94 ± 16.42), although there were no significant statistical differences among them. Both implant surfaces (SA and OS) demonstrated a good bone response with significant amounts of newly formed bone along the implant surface after 12 weeks of implantation. These results confirmed the importance of the topography and physico–chemical properties of dental implants in the osseointegration.


2018 ◽  
Vol 9 ◽  
pp. 204173141879069 ◽  
Author(s):  
Laila Damiati ◽  
Marcus G Eales ◽  
Angela H Nobbs ◽  
Bo Su ◽  
Penelope M Tsimbouri ◽  
...  

Titanium (Ti) plays a predominant role as the material of choice in orthopaedic and dental implants. Despite the majority of Ti implants having long-term success, premature failure due to unsuccessful osseointegration leading to aseptic loosening is still too common. Recently, surface topography modification and biological/non-biological coatings have been integrated into orthopaedic/dental implants in order to mimic the surrounding biological environment as well as reduce the inflammation/infection that may occur. In this review, we summarize the impact of various Ti coatings on cell behaviour both in vivo and in vitro. First, we focus on the Ti surface properties and their effects on osteogenesis and then on bacterial adhesion and viability. We conclude from the current literature that surface modification of Ti implants can be generated that offer both osteoinductive and antimicrobial properties.


2017 ◽  
Vol 8 (4) ◽  
pp. 262-266
Author(s):  
Nabeel F Talic

ABSTRACT Aim The aim of this study was to examine the effect of in vivo air-powder polishing on the surface roughness and topography of aged orthodontic stainless steel arch wires. Materials and methods A total of 20 stainless steel arch wires were used in this study. Ten wires (experimental) were aged and exposed to air-powder polishing, and 10 wires asreceived from the manufacturer served as the controls. The experimental group of wires was aged in the patient's oral cavity for an average of 5.3 ± 2.7 months. An air-powder polishing system was used to remove external stains and plaque deposits. The powder was sodium bicarbonate. The surface topography measurements were performed using an optical profilometer. Following the profilometer analysis, a scanning electron microscope (SEM) was used to evaluate the experimental and control arch wires. Results The average roughness (Sa) of the experimental upper and lower surfaces exposed to air-powder polishing was significantly higher than the control arch wires (p < 0.01). The root mean square of the surface topography (Sq) and the 10-point height of the surface topography (Sz) were significantly higher on the upper and lower surfaces of the experimental arch wires compared with the controls (p < 0.05 and <0.01 respectively). The SEM photomicrographs of the experimental and control arch wires indicated that the experimental arch wires were pitted and filled with surface impurities. Conclusion An air-powder polishing system using sodium bicarbonate powder alters the surface topography and increases the surface roughness of aged orthodontic arch wires in vitro. Clinical significance The air-powder polishing system used along with scaling alters the surface roughness of orthodontic wire. How to cite this article Talic NF. Effect of Air-powder Polishing on the Surface Topography of Orthodontic Stainless Steel Wires. World J Dent 2017;8(4):262-266.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Helder H. M. Menezes ◽  
Marina M. Naves ◽  
Henara L. Costa ◽  
Tarsis P. Barbosa ◽  
Jéssica A. Ferreira ◽  
...  

Surface treatment alone does not determine the final microtopography of a dental implant, which can be influenced by implant design and the surgical procedure. This study investigated the effect of surgical placement of dental implants with same surface treatments on surface roughness. Three implants (SIN) of each group with different macrogeometries (Strong, Stylus, and Tryon) were analyzed using laser interferometry and scanning electron microscopy to evaluate surface topography. All threaded regions of the implants, namely, top, flank, and valley, were analyzed individually. Relevant surface parameters (Sa, Ssk, Sku, Str, and Sdq) were calculated for the different regions on each implant before (B) (n = 9) and after (A) (n = 9) placement into porcine rib bones. The behavior and proliferation of a preosteoblastic cell line MC3T3-E1 on titanium surface, cell viability, and osteopontin secretion were evaluated after 24 h, 48 h, and 96 h, also before (n = 18) and after (n = 18) implant placement into porcine ribs bone. As results, the valleys of all implants had an increase in Sa values after implant placement. By contrast, the tops of the Stylus A implant and the flanks of the Tryon A implant showed a significant decrease in mean height of the irregularities (Sa), 0.16 µm and 1.25 µm, respectively. The Stylus implant presented significantly (p<0.05) higher asymmetry values on the distribution curve for irregularity heights (Sku) in all regions after insertion into bone (6.99 for tops, 9.54 for flanks, and 17.64 for valleys), indicating a greater preponderance of peaks over valleys. An increase in roughness gradients (Sdq) was observed for all macrogeometries after insertion into bone. The cell culture results showed no significant difference (p>0.05) for all macrogeometries after bone placement. In conclusion, a subtle change in implant surface roughness was detected after insertion into bone for all the macrogeometries, without significantly affecting the cellular parameters studied.


2004 ◽  
Vol 24 (5) ◽  
pp. 647-651 ◽  
Author(s):  
E.C.S. Rigo ◽  
A.O. Boschi ◽  
M. Yoshimoto ◽  
S. Allegrini ◽  
B. Konig ◽  
...  

2013 ◽  
Vol 24 (8) ◽  
pp. 2047-2055 ◽  
Author(s):  
M. Herrero-Climent ◽  
P. Lázaro ◽  
J. Vicente Rios ◽  
S. Lluch ◽  
M. Marqués ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document