Surface Modification of Ti Dental Implants by Grit-Blasting and Micro-Arc Oxidation

2008 ◽  
Vol 47-50 ◽  
pp. 467-470 ◽  
Author(s):  
Yeon Wook Kim

The osseointegration capability of titanium dental implants is related to their chemical composition and surface roughness. In this study, the combination of grit-blasting and micro-arc oxidation had been used for producing the improved implant surfaces. The ceramic particles were projected to titanium dental implants through a nozzle at high velocity by means of compressed air to get high surface roughness. Then the surface of titanium implants was modified by micro-arc oxidation treatment. The current density, frequency and duty were 50-300 mA/cm2, 100 Hz, and 50%, respectively. A porous TiO2 layer was formed on the surface after the oxidation treatment. The surface structure of oxidized implants exhibited nanometer-sized pores with an average diameter of 0.2 µm. The TiO2 passive layer of the implant surface can attribute to the excellent biocompatibility. The high roughness (Ra=0.182 µm) formed by grit-blasting maximizes the interlocking between mineralized bone and the surface of the implant. Surface roughness in the manometer range formed by micro-arc oxidation treatment would play an important role in the adsorption of proteins, adhesion of osteoblastic cell and thus the rate of osseointegration.

2018 ◽  
Author(s):  
Preeti Satheesh Kumar ◽  
Vyoma Venkatesh Grandhi ◽  
Vrinda Gupta

BACKGROUND . A variety of claims are made regarding the effects of surface topography on implant osseointegration. The development of implant surfaces topography has been empirical, requiring numerous in vitro and in vivo tests. Most of these tests were not standardized, using different surfaces, cell populations or animal models. The exact role of surface chemistry and topography on the early events of the osseointegration of dental implants remain poorly understood. OBJECTIVE This review considers the major claims made concerning the effects of titanium implant surface topography on osseointegration. The osseointegration rate of titanium dental implants is related to their composition and surface roughness. The different methods used for increasing surface roughness or applying osteoconductive coatings to titanium dental implants are reviewed. Important findings of consensus are highlighted, and existing controversies are revealed. METHODS This review considers many of the research publications listed in MEDLINE and presented in biomedical research publications and textbooks. Surface treatments, such as titanium plasma-spraying, grit-blasting acid-etching,alkaline etching, anodization,polymer demixing ,sol gel conversion and their corresponding surface morphologies and properties are described. RESULTS Many in vitro evaluations are not predictive of or correlated with in vivo outcomes. In some culture models, increased surface topography positively affects pro-osteogenic cellular activities. Many studies reveal increase in bone-to-implant contact,with increased surface topography modifications on implant surfaces. CONCLUSIONS Increased implant surface topography improves the bone-to-implant contact and the mechanical properties of the enhanced interface.


2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


2020 ◽  
Vol 10 (21) ◽  
pp. 7520
Author(s):  
Maria Menini ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
Francesca Delucchi ◽  
Elisa Morganti ◽  
...  

Background: The aim of this study was to evaluate the macro- and micro-structure and the chemical composition of the surface of 5 different commercially available dental implants. Roughness values were also calculated. Materials and Methods: 1 zirconia implant (NobelPearl of Nobel Biocare) and 4 titanium implants, Syra (Sweden&Martina), Prama (Sweden&Martina), T3 (Biomet 3i), and Shard (Mech&Human), were analyzed through SEM-EDX analysis and quantitative evaluation of surface roughness (1 sample), and XPS chemical analysis (1 sample). Surface roughness was quantitatively assessed using the stereo-SEM method (SSEM). The following area roughness parameters were calculated, according to ISO25178: Sa, Sz, and Sdr. Results: From the SEM observations, all the implants analyzed presented modern well-developed micro-structures as the result of the specific process of double acid etching alone or combined with other additional treatments. Roughness values were generally greater at the level of the implant body and lower at the collar. The chemical characterization of the implant surfaces exhibited excellent results for all of the implants and indicated good care in the production processes. Conclusions: All the samples were well-conceived in terms of topography and surface roughness, and clean in terms of chemical residues.


2020 ◽  
Vol 20 (7) ◽  
pp. 4152-4157
Author(s):  
Jeong Jun Kim ◽  
Jong Kook Lee

Highly roughened surfaces on dental implants enhance the bone-bonding ability and in vivo cell adhesion on the implant surface. In this study, zirconia substrates were coated by powder coating using room temperature spray processing to improve their surface properties. Processing factors (particle size of the starting powder, number of repetitions of the deposition cycle, and spraying distance) were controlled to form a dense coating layer with high surface roughness on the zirconia substrate. Starting zirconia powders for coating were heat-treated at high temperature to control the particle size and kinetic energy. The coating layer fabricated from starting powder with a particle size of about 1.52 μm shows a homogeneous and dense microstructure, and it has a maximum surface roughness about 0.37 μm. The surface roughness of the film coatings increased with the number of times that the deposition cycle was repeated. No phase changes between the starting powder and the coating layer were observed, and all of the materials show identical tetragonal phases.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
F. Mangano ◽  
L. Chambrone ◽  
R. van Noort ◽  
C. Miller ◽  
P. Hatton ◽  
...  

Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices.Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties.Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, andin vitrocell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used.Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality.Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.


2007 ◽  
Vol 361-363 ◽  
pp. 1351-1354 ◽  
Author(s):  
Eric Goyenvalle ◽  
Eric Aguado ◽  
Ronan Cognet ◽  
Xavier Bourges ◽  
G. Daculsi

Surface roughness modulates the osseointegration of orthopaedic and dental titanium implants. High surface roughness is currently obtained by blasting of titanium implants with silica or aluminium abrasive particles. This process includes into the surface abrasive particles and may cause the release of cytotoxic silica or aluminium ions in the peri implant tissue. To overcome this drawback, we currently develop an innovative gridblasting process using Biphasic Calcium Phosphate (BCP) particles (RBBM Resorbable and Biocompatible Blast Media) to generate biocompatible roughened titanium surface. This work present the technique of blasting using RBBM particles to provide a roughened surface which does not release cytotoxic elements and (ii) to assess the effects of such a roughened surface for bone osteointegration in critical size rabbit defect. Our results demonstrate that resorbable biphasic calcium phosphate abrasive particles can be used to create titanium surface roughness. This grid blasting process increases surface roughness of titanium implants and offers a non cytotoxic surface for rapid and efficient osteointegration.


2011 ◽  
Vol 189-193 ◽  
pp. 684-687
Author(s):  
Jian Min Hao ◽  
Hong Chen ◽  
Dong Xiao Li ◽  
Lian Ping Li

In this paper, LY12 alloy was processed by Plasma Micro-arc Oxidation (MAO) technique. When the aluminum alloy was processed by MAO with positive pulses and positive-negative pulses, the latter turned on a slowly growing speed, low surface roughness and high surface micro-rigidity for the layers. The aluminum alloy was set on both anode and cathode, and was processed by MAO at the same time. The number of positive pulses and negative pulses greatly changed the layers. When four positive pulses and four negative pulses are applied, the layer grows quickly and its surface roughness decreases remarkably. Compared with mono-polar MAO, the aluminum alloy MAO ceramic layers processed by the double-polar MAO grow efficiently, and the layer performances improve at the same time.


2007 ◽  
Vol 361-363 ◽  
pp. 613-616
Author(s):  
Laurent Le Guenhennec ◽  
Eric Goyenvalle ◽  
Marco A. Lopez-Heredia ◽  
Pierre Weiss ◽  
Yves Amouriq ◽  
...  

Titanium dental implants presenting different blasted surfaces and an OCP coated surfaces have been implanted in the femoral epiphysis of rabbits. A comparable osseointegration has been observed for the titanium implants blasted either with alumina or biphasic calcium phosphates particles whatever the delay of implantation (2 or 8 weeks). A higher bone to implant contact has been observed for the SLA and OCP coated implants as compared to the grit-blasted groups.


2016 ◽  
Vol 13 (2) ◽  
pp. 28-30
Author(s):  
Ondrej Babík ◽  
Andrej Czán ◽  
Jozef Holubják ◽  
Roman Kameník ◽  
Jozef Pilc

Abstract One of the most best-known characteristic and important requirement of dental implant is made of biomaterials ability to create correct interaction between implant and human body. The most implemented material in manufacturing of dental implants is titanium of different grades of pureness. Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on the successful osseointegration. Among other characteristics of titanium that predetermine ideal biomaterial, it shows a high mechanical strength making precise machining miniature Increasingly difficult. The article is focused on evaluation of the resulting quality, integrity and characteristics of dental implants surface after machining.


Sign in / Sign up

Export Citation Format

Share Document