scholarly journals A Human-Algorithm Integration System for Hip Fracture Detection on Plain Radiography: System Development and Validation Study (Preprint)

2020 ◽  
Author(s):  
Chi-Tung Cheng ◽  
Chih-Chi Chen ◽  
Fu-Jen Cheng ◽  
Huan-Wu Chen ◽  
Yi-Siang Su ◽  
...  

BACKGROUND Hip fracture is the most common type of fracture in elderly individuals. Numerous deep learning (DL) algorithms for plain pelvic radiographs (PXRs) have been applied to improve the accuracy of hip fracture diagnosis. However, their efficacy is still undetermined. OBJECTIVE The objective of this study is to develop and validate a human-algorithm integration (HAI) system to improve the accuracy of hip fracture diagnosis in a real clinical environment. METHODS The HAI system with hip fracture detection ability was developed using a deep learning algorithm trained on trauma registry data and 3605 PXRs from August 2008 to December 2016. To compare their diagnostic performance before and after HAI system assistance using an independent testing dataset, 34 physicians were recruited. We analyzed the physicians’ accuracy, sensitivity, specificity, and agreement with the algorithm; we also performed subgroup analyses according to physician specialty and experience. Furthermore, we applied the HAI system in the emergency departments of different hospitals to validate its value in the real world. RESULTS With the support of the algorithm, which achieved 91% accuracy, the diagnostic performance of physicians was significantly improved in the independent testing dataset, as was revealed by the sensitivity (physician alone, median 95%; HAI, median 99%; <i>P</i>&lt;.001), specificity (physician alone, median 90%; HAI, median 95%; <i>P</i>&lt;.001), accuracy (physician alone, median 90%; HAI, median 96%; <i>P</i>&lt;.001), and human-algorithm agreement [physician alone κ, median 0.69 (IQR 0.63-0.74); HAI κ, median 0.80 (IQR 0.76-0.82); <i>P</i>&lt;.001. With the help of the HAI system, the primary physicians showed significant improvement in their diagnostic performance to levels comparable to those of consulting physicians, and both the experienced and less-experienced physicians benefited from the HAI system. After the HAI system had been applied in 3 departments for 5 months, 587 images were examined. The sensitivity, specificity, and accuracy of the HAI system for detecting hip fractures were 97%, 95.7%, and 96.08%, respectively. CONCLUSIONS HAI currently impacts health care, and integrating this technology into emergency departments is feasible. The developed HAI system can enhance physicians’ hip fracture diagnostic performance.

10.2196/19416 ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. e19416
Author(s):  
Chi-Tung Cheng ◽  
Chih-Chi Chen ◽  
Fu-Jen Cheng ◽  
Huan-Wu Chen ◽  
Yi-Siang Su ◽  
...  

Background Hip fracture is the most common type of fracture in elderly individuals. Numerous deep learning (DL) algorithms for plain pelvic radiographs (PXRs) have been applied to improve the accuracy of hip fracture diagnosis. However, their efficacy is still undetermined. Objective The objective of this study is to develop and validate a human-algorithm integration (HAI) system to improve the accuracy of hip fracture diagnosis in a real clinical environment. Methods The HAI system with hip fracture detection ability was developed using a deep learning algorithm trained on trauma registry data and 3605 PXRs from August 2008 to December 2016. To compare their diagnostic performance before and after HAI system assistance using an independent testing dataset, 34 physicians were recruited. We analyzed the physicians’ accuracy, sensitivity, specificity, and agreement with the algorithm; we also performed subgroup analyses according to physician specialty and experience. Furthermore, we applied the HAI system in the emergency departments of different hospitals to validate its value in the real world. Results With the support of the algorithm, which achieved 91% accuracy, the diagnostic performance of physicians was significantly improved in the independent testing dataset, as was revealed by the sensitivity (physician alone, median 95%; HAI, median 99%; P<.001), specificity (physician alone, median 90%; HAI, median 95%; P<.001), accuracy (physician alone, median 90%; HAI, median 96%; P<.001), and human-algorithm agreement [physician alone κ, median 0.69 (IQR 0.63-0.74); HAI κ, median 0.80 (IQR 0.76-0.82); P<.001. With the help of the HAI system, the primary physicians showed significant improvement in their diagnostic performance to levels comparable to those of consulting physicians, and both the experienced and less-experienced physicians benefited from the HAI system. After the HAI system had been applied in 3 departments for 5 months, 587 images were examined. The sensitivity, specificity, and accuracy of the HAI system for detecting hip fractures were 97%, 95.7%, and 96.08%, respectively. Conclusions HAI currently impacts health care, and integrating this technology into emergency departments is feasible. The developed HAI system can enhance physicians’ hip fracture diagnostic performance.


2020 ◽  
Author(s):  
Jinseok Lee

BACKGROUND The coronavirus disease (COVID-19) has explosively spread worldwide since the beginning of 2020. According to a multinational consensus statement from the Fleischner Society, computed tomography (CT) can be used as a relevant screening tool owing to its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely busy fighting COVID-19 in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool to support physicians. OBJECTIVE We aimed to quickly develop an AI technique to diagnose COVID-19 pneumonia and differentiate it from non-COVID pneumonia and non-pneumonia diseases on CT. METHODS A simple 2D deep learning framework, named fast-track COVID-19 classification network (FCONet), was developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning, using one of the four state-of-art pre-trained deep learning models (VGG16, ResNet50, InceptionV3, or Xception) as a backbone. For training and testing of FCONet, we collected 3,993 chest CT images of patients with COVID-19 pneumonia, other pneumonia, and non-pneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society of Medical and Interventional Radiology public database. These CT images were split into a training and a testing set at a ratio of 8:2. For the test dataset, the diagnostic performance to diagnose COVID-19 pneumonia was compared among the four pre-trained FCONet models. In addition, we tested the FCONet models on an additional external testing dataset extracted from the embedded low-quality chest CT images of COVID-19 pneumonia in recently published papers. RESULTS Of the four pre-trained models of FCONet, the ResNet50 showed excellent diagnostic performance (sensitivity 99.58%, specificity 100%, and accuracy 99.87%) and outperformed the other three pre-trained models in testing dataset. In additional external test dataset using low-quality CT images, the detection accuracy of the ResNet50 model was the highest (96.97%), followed by Xception, InceptionV3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively). CONCLUSIONS The FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic performance in detecting COVID-19 pneumonia. Based on our testing dataset, the ResNet50-based FCONet might be the best model, as it outperformed other FCONet models based on VGG16, Xception, and InceptionV3.


2021 ◽  
Vol 7 (7) ◽  
pp. 105
Author(s):  
Guillaume Reichert ◽  
Ali Bellamine ◽  
Matthieu Fontaine ◽  
Beatrice Naipeanu ◽  
Adrien Altar ◽  
...  

The growing need for emergency imaging has greatly increased the number of conventional X-rays, particularly for traumatic injury. Deep learning (DL) algorithms could improve fracture screening by radiologists and emergency room (ER) physicians. We used an algorithm developed for the detection of appendicular skeleton fractures and evaluated its performance for detecting traumatic fractures on conventional X-rays in the ER, without the need for training on local data. This algorithm was tested on all patients (N = 125) consulting at the Louis Mourier ER in May 2019 for limb trauma. Patients were selected by two emergency physicians from the clinical database used in the ER. Their X-rays were exported and analyzed by a radiologist. The prediction made by the algorithm and the annotation made by the radiologist were compared. For the 125 patients included, 25 patients with a fracture were identified by the clinicians, 24 of whom were identified by the algorithm (sensitivity of 96%). The algorithm incorrectly predicted a fracture in 14 of the 100 patients without fractures (specificity of 86%). The negative predictive value was 98.85%. This study shows that DL algorithms are potentially valuable diagnostic tools for detecting fractures in the ER and could be used in the training of junior radiologists.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liding Yao ◽  
Xiaojun Guan ◽  
Xiaowei Song ◽  
Yanbin Tan ◽  
Chun Wang ◽  
...  

AbstractRib fracture detection is time-consuming and demanding work for radiologists. This study aimed to introduce a novel rib fracture detection system based on deep learning which can help radiologists to diagnose rib fractures in chest computer tomography (CT) images conveniently and accurately. A total of 1707 patients were included in this study from a single center. We developed a novel rib fracture detection system on chest CT using a three-step algorithm. According to the examination time, 1507, 100 and 100 patients were allocated to the training set, the validation set and the testing set, respectively. Free Response ROC analysis was performed to evaluate the sensitivity and false positivity of the deep learning algorithm. Precision, recall, F1-score, negative predictive value (NPV) and detection and diagnosis were selected as evaluation metrics to compare the diagnostic efficiency of this system with radiologists. The radiologist-only study was used as a benchmark and the radiologist-model collaboration study was evaluated to assess the model’s clinical applicability. A total of 50,170,399 blocks (fracture blocks, 91,574; normal blocks, 50,078,825) were labelled for training. The F1-score of the Rib Fracture Detection System was 0.890 and the precision, recall and NPV values were 0.869, 0.913 and 0.969, respectively. By interacting with this detection system, the F1-score of the junior and the experienced radiologists had improved from 0.796 to 0.925 and 0.889 to 0.970, respectively; the recall scores had increased from 0.693 to 0.920 and 0.853 to 0.972, respectively. On average, the diagnosis time of radiologist assisted with this detection system was reduced by 65.3 s. The constructed Rib Fracture Detection System has a comparable performance with the experienced radiologist and is readily available to automatically detect rib fracture in the clinical setting with high efficacy, which could reduce diagnosis time and radiologists’ workload in the clinical practice.


2021 ◽  
Author(s):  
Giuseppe Muscogiuri ◽  
Mattia Chiesa ◽  
Andrea Baggiano ◽  
Pierino Spadafora ◽  
Rossella De Santis ◽  
...  

Abstract Purpose: Artificial intelligence could play a key role in cardiac imaging analysis. To evaluate the diagnostic accuracy of a deep learning (DL) algorithm predicting hemodynamically significant coronary artery disease (CAD) by using a rest dataset of myocardial computed tomography perfusion (CTP) as compared to invasive evaluation. Methods: One hundred and twelve consecutive symptomatic patients scheduled for clinically indicated invasive coronary angiography (ICA) underwent CCTA plus static stress CTP and ICA with invasive fractional flow reserve (FFR) for stenoses ranging between 30% and 80%. Subsequently, a DL algorithm for the prediction of significant CAD by using the rest dataset (CTP-DLrest) and stress dataset (CTP-DLstress) was developed. The diagnostic accuracy for identification of significant CAD using CCTA, CCTA+CTPStress, CCTA+CTP-DLrest, and CCTA+CTP-DLstress were measured and compared. The time of analysis for CTPStress, CTP-DLrest and CTP-DLStress were recorded. Results: Patient-specific sensitivity, specificity, NPV, PPV, accuracy and area under the curve (AUC) of CCTA alone and CCTA+CTPStress were 100%, 33%, 100%, 54%, 63%, 67% and 86%, 89%, 89%, 86%, 88%, 87%, respectively. Patient-specific sensitivity, specificity, NPV, PPV, accuracy and AUC of CCTA+DLrest and CCTA+DLstress were 100%, 72%, 100%, 74%, 84%, 96% and 93%, 83%, 94%, 81%,88%,98%, respectively. All CCTA+CTPStress, CCTA+CTP-DLRest and CCTA+CTP-DLStress significantly improved detection of hemodynamically significant CAD (p<0.01).Time of CTP-DL was significantly lower as compared to human analysis (39.2±3.2 vs. 379.6±68.0 seconds, p<0.001).Conclusion: Evaluation of myocardial ischemia using a DL approach on rest CTP datasets is feasible and accurate. This approach may be a useful gatekeeper prior to CTPStress.


2022 ◽  
Vol 8 ◽  
Author(s):  
Danyan Li ◽  
Xiaowei Han ◽  
Jie Gao ◽  
Qing Zhang ◽  
Haibo Yang ◽  
...  

Background: Multiparametric magnetic resonance imaging (mpMRI) plays an important role in the diagnosis of prostate cancer (PCa) in the current clinical setting. However, the performance of mpMRI usually varies based on the experience of the radiologists at different levels; thus, the demand for MRI interpretation warrants further analysis. In this study, we developed a deep learning (DL) model to improve PCa diagnostic ability using mpMRI and whole-mount histopathology data.Methods: A total of 739 patients, including 466 with PCa and 273 without PCa, were enrolled from January 2017 to December 2019. The mpMRI (T2 weighted imaging, diffusion weighted imaging, and apparent diffusion coefficient sequences) data were randomly divided into training (n = 659) and validation datasets (n = 80). According to the whole-mount histopathology, a DL model, including independent segmentation and classification networks, was developed to extract the gland and PCa area for PCa diagnosis. The area under the curve (AUC) were used to evaluate the performance of the prostate classification networks. The proposed DL model was subsequently used in clinical practice (independent test dataset; n = 200), and the PCa detective/diagnostic performance between the DL model and different level radiologists was evaluated based on the sensitivity, specificity, precision, and accuracy.Results: The AUC of the prostate classification network was 0.871 in the validation dataset, and it reached 0.797 using the DL model in the test dataset. Furthermore, the sensitivity, specificity, precision, and accuracy of the DL model for diagnosing PCa in the test dataset were 0.710, 0.690, 0.696, and 0.700, respectively. For the junior radiologist without and with DL model assistance, these values were 0.590, 0.700, 0.663, and 0.645 versus 0.790, 0.720, 0.738, and 0.755, respectively. For the senior radiologist, the values were 0.690, 0.770, 0.750, and 0.730 vs. 0.810, 0.840, 0.835, and 0.825, respectively. The diagnosis made with DL model assistance for radiologists were significantly higher than those without assistance (P &lt; 0.05).Conclusion: The diagnostic performance of DL model is higher than that of junior radiologists and can improve PCa diagnostic accuracy in both junior and senior radiologists.


Author(s):  
Amit Doegar ◽  
◽  
Maitreyee Dutta ◽  
Gaurav Kumar ◽  
◽  
...  

In the present scenario, one of the threats of trust on images for digital and online applications as well as on social media. Individual’s reputation can be turnish using misinformation or manipulation in the digital images. Image forgery detection is an approach for detection and localization of forged components in the image which is manipulated. For effective image forgery detection, an adequate number of features are required which can be accomplished by a deep learning model, which does not require manual feature engineering or handcraft feature approaches. In this paper we have implemented GoogleNet deep learning model to extract the image features and employ Random Forest machine learning algorithm to detect whether the image is forged or not. The proposed approach is implemented on the publicly available benchmark dataset MICC-F220 with k-fold cross validation approach to split the dataset into training and testing dataset and also compared with the state-of-the-art approaches.


Lung cancer is more dangerous than any other cancer. Nowadays many people are affecting lung cancer because of their lifestyle and environmental conditions. The basic cause of lung cancer is smoking. Many steps are taken to avoid smoking but on the other way the cancer is affecting the people. In this paper, the Enhanced Deep Learning (EDL) based algorithm is introduced to detects cancer in lungs in various patients based on their symptoms. It is very important to detect the cancer in the earliers stages. The proposed system calculates the three parameters such as sensitivity, specificity and accuracy. Results show the performance of the proposed system.


2021 ◽  
pp. bjophthalmol-2020-318275
Author(s):  
Natalia Porporato ◽  
Tin A Tun ◽  
Mani Baskaran ◽  
Damon W K Wong ◽  
Rahat Husain ◽  
...  

AimsTo validate a deep learning (DL) algorithm (DLA) for 360° angle assessment on swept-source optical coherence tomography (SS-OCT) (CASIA SS-1000, Tomey Corporation, Nagoya, Japan).MethodsThis was a reliability analysis from a cross-sectional study. An independent test set of 39 936 SS-OCT scans from 312 phakic subjects (128 SS-OCT meridional scans per eye) was analysed. Participants above 50 years with no previous history of intraocular surgery were consecutively recruited from glaucoma clinics. Indentation gonioscopy and dark room SS-OCT were performed. Gonioscopic angle closure was defined as non-visibility of the posterior trabecular meshwork in ≥180° of the angle. For each subject, all images were analysed by a DL-based network based on the VGG-16 architecture, for gonioscopic angle-closure detection. Area under receiver operating characteristic curves (AUCs) and other diagnostic performance indicators were calculated for the DLA (index test) against gonioscopy (reference standard).ResultsApproximately 80% of the participants were Chinese, and more than half were women (57.4%). The prevalence of gonioscopic angle closure in this hospital-based sample was 20.2%. After analysing a total of 39 936 SS-OCT scans, the AUC of the DLA was 0.85 (95% CI:0.80 to 0.90, with sensitivity of 83% and a specificity of 87%) to classify gonioscopic angle closure with the optimal cut-off value of >35% of circumferential angle closure.ConclusionsThe DLA exhibited good diagnostic performance for detection of gonioscopic angle closure on 360° SS-OCT scans in a glaucoma clinic setting. Such an algorithm, independent of the identification of the scleral spur, may be the foundation for a non-contact, fast and reproducible ‘automated gonioscopy’ in future.


Sign in / Sign up

Export Citation Format

Share Document