scholarly journals North Atlantic climate: ice sheet-ocean atmosphere interactions on millennial timescales during the late Neogene-Quaternary using a paleointensity-assisted chronology for the North Atlantic

Author(s):  
2013 ◽  
Vol 9 (5) ◽  
pp. 2135-2151 ◽  
Author(s):  
C. Marzin ◽  
N. Kallel ◽  
M. Kageyama ◽  
J.-C. Duplessy ◽  
P. Braconnot

Abstract. Several paleoclimate records such as from Chinese loess, speleothems or upwelling indicators in marine sediments present large variations of the Asian monsoon system during the last glaciation. Here, we present a new record from the northern Andaman Sea (core MD77-176) which shows the variations of the hydrological cycle of the Bay of Bengal. The high-resolution record of surface water δ18O dominantly reflects salinity changes and displays large millennial-scale oscillations over the period 40 000 to 11 000 yr BP. Their timing and sequence suggests that events of high (resp. low) salinity in the Bay of Bengal, i.e. weak (resp. strong) Indian monsoon, correspond to cold (resp. warm) events in the North Atlantic and Arctic, as documented by the Greenland ice core record. We use the IPSL_CM4 Atmosphere-Ocean coupled General Circulation Model to study the processes that could explain the teleconnection between the Indian monsoon and the North Atlantic climate. We first analyse a numerical experiment in which such a rapid event in the North Atlantic is obtained under glacial conditions by increasing the freshwater flux in the North Atlantic, which results in a reduction of the intensity of the Atlantic meridional overturning circulation. This freshwater hosing results in a weakening of the Indian monsoon rainfall and circulation. The changes in the continental runoff and local hydrological cycle are responsible for an increase in salinity in the Bay of Bengal. This therefore compares favourably with the new sea water δ18O record presented here and the hypothesis of synchronous cold North Atlantic and weak Indian monsoon events. Additional sensitivity experiments are produced with the LMDZ atmospheric model to analyse the teleconnection mechanisms between the North Atlantic and the Indian monsoon. The changes over the tropical Atlantic are shown to be essential in triggering perturbations of the subtropical jet over Africa and Eurasia, that in turn affect the intensity of the Indian monsoon. These relationships are also found to be valid in additional coupled model simulations in which the Atlantic meridional overturning circulation (AMOC) is forced to resume.


2021 ◽  
Author(s):  
Sophie Stolzenberger ◽  
Roelof Rietbroek ◽  
Claudia Wekerle ◽  
Bernd Uebbing ◽  
Jürgen Kusche

<p>The impact of Greenland freshwater on oceanic variables in the North Atlantic has been controversially discussed in the past. Within the framework of the German research project GROCE (Greenland Ice Sheet Ocean Interaction), we present a comprehensive study using ocean modelling results including and excluding the Greenland freshwater flux. The aim of this study is whether signatures of Greenland ice sheet melting found in ocean model simulations are visible in the observations. Therefore, we estimate changes in temperature, salinity, steric heights and sea level anomalies since the 1990s. The observational database includes altimetric and gravimetric satellite data as well as Argo floats. We will discuss similarities/differences between model simulations and observations for smaller regions around Greenland in the North Atlantic. As these experiments are available for two different horizontal resolutions, we will furthermore be able to assess the effects of an increased model resolution.</p>


2021 ◽  
Author(s):  
Brian Crow ◽  
Matthias Prange ◽  
Michael Schulz

<p>Historical estimates of the melt rate and extent of the Greenland ice sheet (GrIS) are poorly constrained, due both to incomplete understanding of relevant ice dynamics and the magnitude of forcing acting upon the ice sheet (e.g., Alley et al. 2010). Previous assessments of the Marine Isotope Stage 11 (MIS-11) interglacial period have determined it was likely one of the warmest and longest interglacial periods of the past 800 kyr, leading to melt of at least half the present-day volume of the Greenland ice sheet (Robinson et al. 2017). An enhanced Atlantic meridional overturning circulation (AMOC) is commonly cited as sustaining the anomalous warmth across the North Atlantic and Greenland (e.g., Rachmayani et al. 2017), but little is known about potential atmospheric contributions. Paleorecords from this period are sparse, and detailed climate modelling studies of this period have been heretofore very limited. The climatic conditions over Greenland and the North Atlantic region, and how they may have contributed to the melt of the GrIS during MIS-11, are therefore not well understood. By utilizing climate simulations with the Community Earth System Model (CESM), our study indicates that changes in atmospheric eddy behavior, including eddy fluxes of heat and precipitation, made significant contributions to the negative mass balance conditions over the GrIS during the MIS-11 interglacial. Thus, accounting for the effects of atmospheric feedbacks in a warmer-than-present climate is a necessary component for future analyses attempting to better constrain the extent and rate of melt of the GrIS.</p>


1990 ◽  
Vol 14 ◽  
pp. 345-345
Author(s):  
Dean R. Lindstrom

A numerical model which simultaneously computes grounded and ice-shelf flow was used to develop an equilibrium ice-sheet–ice-shelf system over Eurasia and the Arctic region. Present-day net accumulation rates and mean annual and July temperature values were used as base values for climatic variable specifications. The values were adjusted during the model run to account for changes in the ice-surface elevation and atmospheric CO2 concentration. The model-determined equilibrium ice-sheet configuration was used as input for additional runs to observe what effect removing the Arctic ice shelf and increasing the CO2 concentration from glacial to present-day values has on the ice sheet.At equilibrium, an ice shelf formed over the Arctic Ocean and Greenland and Norwegian seas. Ice easily grounded over the Barents, Kara, East Siberian, and Laptev seas. The grounded ice-sheet profile differs in Europe from most glacial geological reconstructions because the North Atlantic Current effect was not removed from the climatic adjustments. As a result, ice did not extend over the North Sea and onto the British Isles because of the North Atlantic Current's warming effect. Also, the precipitation rate over Europe was too high because of the moisture source the North Atlantic Current carries, and the ice sheet expanded beyond the field-determined ice-sheet margins in the region south-east of Finland.Removing most of the Arctic region's ice-shelf cover had little effect on the grounded ice sheet unless it rested upon a deformable sediment layer. The ice sheet was able to collapse within 10 000 years, however, when the CO2 concentration was gradually increased toward present-day values using the Vostok ice core's CO2 record from the last 18 000 years. Initially, most mass loss resulted from surface melting. Once the thickness decreased enough over some regions for the grounded ice to become ungrounded, however, most mass loss resulted from the ice shelf rapidly transporting the ice to the ice-shelf front and discharging it to the sea.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 119
Author(s):  
Gloria Martin-Garcia

Integrative studies on paleoclimate variations over oceanic and continental regions are scarce. Though it is known that Earth’s climate is strongly affected by sea-air exchanges of heat and moisture, the role of oceans in climate variations over land remains relatively unexplored. With the aim to unveil this influence, the present work studies major climate oscillations in the North Atlantic region and Europe during the Quaternary, focusing on the oceanic mechanisms that were related to them. During this period, the European climate experienced long-term and wide-amplitude glacial-interglacial oscillations. A covariance between the North Atlantic sea surface temperature and climate signals over the continent is especially observed in Southern Europe. The most severe and drastic climate changes occurred in association to deglaciations, as a consequence of major oceanographic reorganizations that affected atmospheric circulation and ocean-atmosphere heat-flow, which led to variation of temperature and precipitation inland. Most deglaciations began when Northern Hemisphere summer insolation was maximal. Increased heating facilitated the rapid ice-sheet collapse and the massive release of fresh water into the Northern Atlantic, which triggered the weakening or even the shutdown of the North Atlantic Deep Water (NADW) formation. Though the extension of ice-sheets determined the high-latitude European climate, the climate was more influenced by rapid variations of ice volume, deep-water formation rate, and oceanic and atmospheric circulation in middle and subtropical latitudes. In consequence, the coldest stadials in the mid-latitude North Atlantic and Europe since the early Pleistocene coincided with Terminations (glacial/interglacial transitions) and lesser ice-sheet depletions. They were related with decreases in the NADW formation rate that occurred at these times and the subsequent advection of subpolar waters along the western European margin. In Southern Europe, steppe communities substituted temperate forests. Once the freshwater perturbation stopped and the overturning circulation resumed, very rapid and wide-amplitude warming episodes occurred (interstadials). On the continent, raised temperature and precipitations allowed the rapid expansion of moisture-requiring vegetation.


Sign in / Sign up

Export Citation Format

Share Document