Wettability Evaluation of Solder Paste by Displacement Method

2013 ◽  
Vol 82 (4) ◽  
pp. 281-283
Author(s):  
Kiyoshi Hiramoto
2011 ◽  
Vol 14 (5) ◽  
pp. 390-393 ◽  
Author(s):  
Ikuo Shohji ◽  
Shinji Koyama ◽  
Issei Oya ◽  
Toshihiro Isaka ◽  
Hironaga Miyamoto ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2226-2234
Author(s):  
Ana María Pineda-Reyes ◽  
Mauricio Hernández Delgado ◽  
María de la Luz Zambrano-Zaragoza ◽  
Gerardo Leyva-Gómez ◽  
Nestor Mendoza-Muñoz ◽  
...  

A novel solvent emulsification-displacement method for obtaining polystyrene nanoparticles is reported. This process has an added value and can be an alternative for the recycling of expanded polystyrene.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3353
Author(s):  
Marina Makrygianni ◽  
Filimon Zacharatos ◽  
Kostas Andritsos ◽  
Ioannis Theodorakos ◽  
Dimitris Reppas ◽  
...  

Current challenges in printed circuit board (PCB) assembly require high-resolution deposition of ultra-fine pitch components (<0.3 mm and <60 μm respectively), high throughput and compatibility with flexible substrates, which are poorly met by the conventional deposition techniques (e.g., stencil printing). Laser-Induced Forward Transfer (LIFT) constitutes an excellent alternative for assembly of electronic components: it is fully compatible with lead-free soldering materials and offers high-resolution printing of solder paste bumps (<60 μm) and throughput (up to 10,000 pads/s). In this work, the laser-process conditions which allow control over the transfer of solder paste bumps and arrays, with form factors in line with the features of fine pitch PCBs, are investigated. The study of solder paste as a function of donor/receiver gap confirmed that controllable printing of bumps containing many microparticles is feasible for a gap < 100 μm from a donor layer thickness set at 100 and 150 μm. The transfer of solder bumps with resolution < 100 μm and solder micropatterns on different substrates, including PCB and silver pads, have been achieved. Finally, the successful operation of a LED interconnected to a pin connector bonded to a laser-printed solder micro-pattern was demonstrated.


Author(s):  
Yam Lip Huei ◽  
Lo Yee Ting ◽  
Chong Kim Hui ◽  
B. Senthil Kumar ◽  
Chan Li-San ◽  
...  
Keyword(s):  

2010 ◽  
Vol 426-427 ◽  
pp. 432-435
Author(s):  
De Gong Chang ◽  
J. Zhang ◽  
M.L. Lv

The larger variation of the construction and performance of the low-carbon steel joints was caused by the high temperature of the puddle welding of the joint. Therefore, the braze welding rather than the puddle welding was applied to the welding production of low-carbon steel. The 08 steel parts were joined in a furnace using pure copper solder paste as brazing filler metal. According to the obtained results, the ideal technical parameters are as follow: brazing temperature: 1100-1150°C; holding time: 5-10min; joint clearance: 0.03-0.05mm.


Sign in / Sign up

Export Citation Format

Share Document