CRITICAL HEIGHT FOR SELF-WEIGHT BUCKLING IN TAPERED TREES

Author(s):  
Tohya KANAHAMA ◽  
Takanori FUJIMURA ◽  
Motohiro SATO
Keyword(s):  
1995 ◽  
Vol 25 (11) ◽  
pp. 1783-1794 ◽  
Author(s):  
Thomas B. Lynch

Three basic techniques are proposed for reducing the variance of the stand volume estimate provided by cylinder sampling and Ueno's method. Ueno's method is based on critical height sampling but does not require measurement of critical heights. Instead, a count of trees whose critical heights are less than randomly generated heights is used to estimate stand volume. Cylinder sampling selects sample trees for which randomly generated heights fall within cylinders formed by tree heights and point sampling plot sizes. The methods proposed here for variance reduction in cylinder sampling and Ueno's method are antithetic variates, importance sampling, and control variates. Cylinder sampling without variance reduction was the most efficient of 12 methods compared in computer simulation that used estimated measurement times. However, cylinder sampling requires knowledge of a combined variable individual tree volume equation. Of the three variance reduction techniques applied to Ueno's method, antithetic variates performed best in computer simulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Teresa A. Newsome ◽  
Jean L. Heineman ◽  
Amanda F. Linnell Nemec

Critical height ratios for predicting competition between trembling aspen and lodgepole pine were identified in six juvenile stands in three south-central British Columbia ecosystems. We used a series of regression analyses predicting pine stem diameter from the density of neighbouring aspen in successively shorter relative height classes to identify the aspen-pine height ratio that maximizedR2. Critical height ratios varied widely among sites when stands were 8–12 years old but, by age 14–19, had converged at 1.25–1.5. MaximumR2values at age 14–19 ranged from 13.4% to 69.8%, demonstrating that the importance of aspen competition varied widely across a relatively small geographic range. Logistic regression also indicated that the risk of poor pine vigour in the presence of aspen varied between sites. Generally, the degree of competition, risk to pine vigour, and size of individual aspen contributing to the models declined along a gradient of decreasing ecosystem productivity.


2021 ◽  
Vol 156 (A2) ◽  
Author(s):  
M Pawłowski ◽  
A Laskowski

Effect of various subdivision arrangements of ro-ro vessels on damage stability is discussed. The arrangements included single and double sides both below and above the car deck, with and without a double buoyant car deck, and with or with- out a watertight tween deck below the car deck. This gave as many as 16 various arrangements for each compartment length. The double sides both above and below the car deck are of the same width b = 0.1B. The double bottom, when not flooded, worsens damage stability. The car deck and tween decks should be ‘openwork’, to be transparent for water and air. Oth- erwise, the ship can capsize at the very initial stages of flooding. Double sides and a double car deck together improve con- siderably damage stability, both in terms of maximum arm and range. A new characteristic was introduced, termed the critical deck height. Flooding a deck above the critical height leads to a rapid capsizing of the ship.


1959 ◽  
Vol 63 (588) ◽  
pp. 722-722
Author(s):  
R. L. Dommett

It has been found that there is a critical height for “sandpaper” type roughness below which no measurable disturbances are introduced into a laminar boundary layer and above which transition is initiated at the roughness. Braslow and Knox have proposed a method of predicting this height, for flow over a flat plate or a cone, using exact solutions of the laminar boundary layer equations combined with a correlation of experimental results in terms of a Reynolds number based on roughness height, k, and local conditions at the top of the elements. A simpler, yet more general, method can be constructed by taking additional advantage of the linearity of the velocity profile near the wall in a laminar boundary layer.


2015 ◽  
Vol 783 ◽  
Author(s):  
O. Thual ◽  
L. Lacaze ◽  
M. Mouzouri ◽  
B. Boutkhamouine

Backwater curves denote the depth profiles of steady flows in a shallow open channel. The classification of these curves for turbulent regimes is commonly used in hydraulics. When the bottom slope $I$ is increased, they can describe the transition from fluvial to torrential regimes. In the case of an infinitely wide channel, we show that laminar flows have the same critical height $h_{c}$ as that in the turbulent case. This feature is due to the existence of surface slope singularities associated to plug-like velocity profiles with vanishing boundary-layer thickness. We also provide the expression of the critical surface slope as a function of the bottom curvature at the critical location. These results validate a similarity model to approximate the asymptotic Navier–Stokes equations for small slopes $I$ with Reynolds number $Re$ such that $Re\,I$ is of order 1.


2016 ◽  
Vol 753 ◽  
pp. 022023 ◽  
Author(s):  
Christian Bak ◽  
Mac Gaunaa ◽  
Anders S. Olsen ◽  
Emil K. Kruse

2009 ◽  
Vol 618 ◽  
pp. 71-87 ◽  
Author(s):  
DANIEL BONN ◽  
ANDERS ANDERSEN ◽  
TOMAS BOHR

We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected for a supercritical one-dimensional boundary layer flow, but we find that the surface slope is up to an order of magnitude larger than expected and independent of flow rate. We explain this as an effect of turbulent fluctuations creating an enhanced eddy viscosity, and we model the results in terms of Prandtl's mixing-length theory with a mixing length that is proportional to the height of the fluid layer. Using averaged boundary-layer equations, taking into account the friction with the channel walls and the eddy viscosity, the flow both upstream and downstream of the jump can be understood. For the downstream subcritical flow, we assume that the critical height is attained close to the channel outlet. We use mass and momentum conservation to determine the position of the jump and obtain an estimate which is in rough agreement with our experiment. We show that the averaging method with a varying velocity profile allows for computation of the flow-structure through the jump and predicts a separation vortex behind the jump, something which is not clearly seen experimentally, probably owing to turbulence. In the sheet flow, we find that the jump has the shape of a rhombus with sharply defined oblique shocks. The experiment shows that the variation of the opening angle of the rhombus with flow rate is determined by the condition that the normal velocity at the jump is constant.


1990 ◽  
Vol 112 (3) ◽  
pp. 289-295 ◽  
Author(s):  
K. Katoh ◽  
H. Fujita ◽  
H. Sasaki

Macroscopic wetting behavior is investigated theoretically from a thermodynamic viewpoint. The axisymmetric liquid meniscus formed under a conical solid surface is chosen as the subject of the theoretical analysis. Using the meniscus configuration obtained by the Laplace equation, the total free energy of the system is calculated. In the case of the half vertical angle of the cone φ = 90 deg (horizontal plate), the system shows thermodynamic instability when the meniscus attaches to the solid surface at the contact angle. This result, unlike the conventional view, agrees well with the practical wetting behavior observed in this study. On the other hand, when 0 deg < φ < 90 deg, the system shows thermodynamic stability at the contact angle. However, when the solid cone is held at a position higher than the critical height from a stationary liquid surface, the system becomes unstable. It is possible to measure the contact angle easily using this unstable phenomenon.


2020 ◽  
Vol 87 (5) ◽  
Author(s):  
Ruitao Tang ◽  
Haoran Fu

Abstract Island-bridge structures incorporated with kirigami membranes emerge as a novel design strategy for flexible/stretchable electronics, taking advantages of large stretchability, high-surface filling ratio and low resistance. However, it is hard to determine the mechanical properties of this design due to its complex geometries and nonlinear deformation configuration, thereby limiting its further applications. In this paper, we present a model for the postbuckling behavior of kirigami membranes through a combination of theoretical modeling, finite element analysis, and experiments. Scaling laws for elastic stretchability are developed, showing good agreement with numerical results and experimental images. Investigations on the critical height of post array are conducted to ensure the boundary condition of the kirigami membranes in the analytical model. These results can serve as design guidelines for kirigami structures and facilitate their applications in flexible/stretchable electronics.


Sign in / Sign up

Export Citation Format

Share Document