scholarly journals CHARACTERISTICS OF WATER LEVEL RISE SPEED BY STORM SURGE AT INNER PART OF YATSUSHIRO BAY AND DISASTER REDUCTION ACTIVITY

Author(s):  
Sota NAKAJO ◽  
Hideyuki FUJIKI ◽  
Sooyoul KIM
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zengan Deng ◽  
Feng Zhang ◽  
Linchong Kang ◽  
Xiaoyi Jiang ◽  
Jiye Jin ◽  
...  

East China Sea (ECS) Storm Surge Modeling System (ESSMS) is developed based on Regional Ocean Modeling System (ROMS). Case simulation is performed on the Typhoon Soulik, which landed on the coastal region of Fujian Province, China, at 6 pm of July 13, 2013. Modeling results show that the maximum tide level happened at 6 pm, which was also the landing time of Soulik. This accordance may lead to significant storm surge and water level rise in the coastal region. The water level variation induced by high winds of Soulik ranges from −0.1 to 0.15 m. Water level generally increases near the landing place, in particular on the left hand side of the typhoon track. It is calculated that 0.15 m water level rise in this region can cause a submerge increase of ~0.2 km2, which could be catastrophic to the coastal environment and the living. Additionally, a Globe Visualization System (GVS) is realized on the basis of World Wind to better provide users with the typhoon/storm surge information. The main functions of GVS include data indexing, browsing, analyzing, and visualization. GVS is capable of facilitating the precaution and mitigation of typhoon/storm surge in ESC in combination with ESSMS.


2020 ◽  
Vol 10 (20) ◽  
pp. 7382
Author(s):  
Li Zhang ◽  
Shaoping Shang ◽  
Feng Zhang ◽  
Yanshuang Xie

Typhoons Soudelor (2015) and Dujuan (2015) were two of the strongest storms to affect the Taiwan Strait in 2015. This study investigated the response of the waters on the western bank of the Taiwan Strait to the passage of Soudelor and Dujuan. This included an investigation of the resonant coupling between the tide and storm surge, typhoon wave variation caused by the storm tide, and wave-induced water level rise. Analyses conducted using numerical model simulations and observations from tidal stations and buoys, obtained during the passage of both Soudelor and Dujuan, revealed that resonant coupling between the astronomical tide and storm surge in the Taiwan Strait was prominent, which resulted in tidal period oscillation on the storm surge and reduced tidal range. The tide wave arrived earlier than the predicted astronomical tide because of the existence of the storm surge, which was attributable to acceleration of the tidal wave caused by the water level rise. Wave height observations showed that the storm tide predominantly affected the waves, which resulted in wave heights that oscillated within the tidal period. Numerical experiments indicated that both the current and the water level affected wave height. Waves were affected mainly by the current in the middle of the Taiwan Strait, but mostly by water level when the water level was comparable with water depth. Wave setup simulations revealed that wave setup also oscillated within the tidal period, and that local bathymetry was the most important influencing factor of wave setup distribution.


2019 ◽  
Vol 12 (9-10) ◽  
pp. 38-48
Author(s):  
V. I. Batuev ◽  
I. L. Kalyuzhny

The development of the European North of Russia, where flat and high-hummocky bog complexes are spread, requires information on the processes of formation of their hydrological regime and freezing of this territory. For the first time, based on observational data, for the period from 1993 to 2013, characteristics of the hydrological regime and freezing of hummocky bogs in Northern European Russia are presented, the case study of the Lovozerskoye bog. The observations were carried out in accordance with the unified methods, approved for the specialized network of Roshydromet bog stations. The regularities of the formation of the hydrological regime of hummocky bogs have been revealed: bog water level drops dramatically from the beginning of freezing to the end of March, rises during snow melt period, slightly drops in summer and rises in autumn. The main feature of hummocky bogs is permafrost, which determines their specific structure. It has been discovered that gravitation snowmelt and liquid precipitation waters relatively quickly run down the hummocks over the frozen layer into hollows between them. Levels of bog waters on the hummocks are absent for a longer period of time. In spring, the amplitude of water level rise in swamplands is on average 60–80 cm. Air temperature and insulation properties of snow are the main factors that influence the bog freezing. Hummocks freeze out as deep as 63–65 cm, which corresponds to the depth of their seasonal thawing in the warm period of the year, and adjoin the permafrost. The greatest depth of freezing of the swamplands is 82 – 87 cm, with an average of 68 cm. The frozen layer at swamplands thaws out from both its upper and bottom sides. The melting of the frozen layer at hummocks occurs only from the bog surface with an average intensity of 0,51 cm/day.


2011 ◽  
Vol 94-96 ◽  
pp. 810-814
Author(s):  
Jin Shan Zhang ◽  
Wei Sheng Zhang ◽  
Chen Cheng ◽  
Lin Yun Sun

Bohai Bay is an semi-closed bay, the storm surge disaster is very serious in past. Now more and more large ocean engineering are built here, To study changes of storm surge induced by the construction of large-scale coastal engineering in Bohai Bay in present, 2D numerical storm surge model is established with large - medium - small model nested approach. The three most typical storms surges: 9216, 9711 and by cold wave in October 2003 are simulated in the condition of before and after implementation of planning projects in Bohai Bay. Changes of storm surge water level due to implementation of artificial projects are analysis in this paper.


1998 ◽  
Vol 25 (5) ◽  
pp. 864-879 ◽  
Author(s):  
Jean Morin ◽  
Michel Leclerc

Lake Saint-François is a relatively shallow fluvial lake of the St. Lawrence River with numerous deep channels. This complex system has been considerably altered from its pristine state 150 years ago. Currently, the water level is stabilized and the flow is regulated; important areas have been dredged and the major part of its outflow is diverted through the Beauharnois canal. The evolution of water levels shows a trend towards stabilization as required for ship traffic in the St. Lawrence Seaway and for hydropower production. With the construction of the Moses-Saunders dam in 1960, the flow of the river could be regulated; changes occur in the seasonal pattern of the flow. Ancient stage-discharge relationships were recreated to describe the impact of the 1849 damming and of the present level stabilization. Stabilization of the water level has favored the growth of submerged plants. Manning's friction coefficient was used to show that plant biomass has doubled since 1920; the onset of biomass increases corresponds to a water level stabilization event. The distribution of wetlands in the Lake Saint-François area was drastically modified by the water level rise caused by the 1849 damming. New wetlands were created and pre-1849 wetlands, located on what are currently shoals in the central part of the lake, have totally disappeared.Key words: Lake Saint-François, St. Lawrence River, impact of civil works, flow discharge regulation, water level regulation, wetland flooding cycle, submerged macrophyte, ecosystem reaction, civil work history.


2014 ◽  
Vol 989-994 ◽  
pp. 2288-2291 ◽  
Author(s):  
Yong Qiang Zhang ◽  
Qian Lan Leng ◽  
Ze Jian Hu ◽  
Zi Chen Zhu ◽  
Wan Jun Zhang ◽  
...  

In this paper, a numerical model of the coupling between astronomical tide and storm surge based on hydraulic model for estuary and coast (ECOM) is confirmed to be suitable for simulation of stormsurge in the Bohai Sea. The spatial distribution of extreme water level and storm current field caused by typhoons in October 2003 are simulated.It shows that extreme water level in deep water are smaller than shallow water and the spatial distribution of extreme water level is influenced by topography.Flow filed in Bohai Sea waters takes on an fluctuation in flow field, compensatory flow and other obvious features during storm surge, compared storm surge with astronomical tide, which is a significant difference in flow filed.


2015 ◽  
Vol 3 (2) ◽  
pp. 428-443 ◽  
Author(s):  
Brian Colle ◽  
Malcolm Bowman ◽  
Keith Roberts ◽  
M. Bowman ◽  
Charles Flagg ◽  
...  
Keyword(s):  
New York ◽  

Author(s):  
Mohamed A. Ashour ◽  
Tawab E. Aly ◽  
Yousra A. Eldegwee

AbstractIn such problematic water situation in Egypt, control and saving of the available limited quantity takes great importance from both technical and national points of view. In addition to all the well-known traditional reasons of the problem such as pollution, over usage, and bad traditions of dealing with water, a new very important reason is added nowadays, called “Climate Changes” which has a direct impact on sea water rising, that causes a serious attack of the salt water to the fresh water especially in River Deltas., Not only the surface water, but also the ground water. Since that process proved some acceleration, several investigations have recently considered the worst impacts of climate change and sea water level rise on sea water intrusion. Most of them have revealed the severity of such problem, and the significance of the land movement of the dispersion zone under the sea water level rise situation. In this paper, we try to introduce a technical review and study for the most popular studies concerning our topic, and its most important conclusions, as an approach for preparing the Ph.D. thesis about the Nile Delta water equilibrium in the light of the expected Mediterranean Sea water level rise. Nile Delta, which located between Damietta Branch on the East, and Rosetta Branch on the west, occupies about 20000 square kilometers of the most rich, productive land in Egypt. About 50% of Egyptian population live in that area, agriculture is the main human activities on them, so water is the prime factor in their life, and their agriculture investments. The great amount of this investment depends on the ground water, which faces a serious challenge due to, two reasons, first, is the overuse, and over pumping, while the second is the attack of the salt water due to the Mediterranean Seawater level rise, because of the climate changes. These two reasons must be overcome, if the first reason can be controlled by law, and technical roles, the second reason needs intensive studies and investigations concerning the interaction between seawater and fresh ground water.


Sign in / Sign up

Export Citation Format

Share Document