scholarly journals EFFECTS OF MIXING RATIO ON UNCONFINED COMPRESSIVE BEHAVIOR OF FIBER REINFORCED MIXTURE OF SOIL AND STEELMAKING SLAG

2017 ◽  
Vol 73 (2) ◽  
pp. I_336-I_341
Author(s):  
Tomokazu YANAGIBASHI ◽  
Yuichi TANAKA ◽  
Ayato TSUTSUMI ◽  
Satoshi MATSUMURA ◽  
Takaaki MIZUTANI ◽  
...  
2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qiao-Huan Wang ◽  
Jiong-Feng Liang ◽  
Chun-Feng He ◽  
Wei Li

This paper attempts to explore the effects of recycled coarse aggregate content, steel fiber content, and concrete strength on the axial compressive behavior of steel fiber-reinforced recycled coarse aggregate (RCA) concrete-filled circular steel stub columns. A total of 14 short columns are tested. The results show that using RCA in concrete will reduce the bearing capacity of short columns, but the increase in steel fiber content and concrete strength can eliminate this shortcoming. Not only that, the concrete strength has a great influence on the ductility and stiffness of the specimen.


2020 ◽  
pp. 152808372092701
Author(s):  
Moniruddoza Ashir ◽  
Chokri Cherif

Adaptive structures contain actuators that enable the controlled modification of system states and characteristics. Furthermore, their geometric configuration as well as physical properties can be varied purposefully. The geometric configuration of adaptive fiber-reinforced plastics can be changed by varying the bending modulus of the matrix material. Hence, this research work presents the influence of thermosetting matrix material with different bending moduli on the deformation behavior of adaptive fiber-reinforced plastics. Firstly, shape memory alloys were converted into shape memory alloy hybrid yarn in order to realize this goal. Subsequently, shape memory alloy hybrid yarn was textile-technically integrated into reinforcing fabrics by means of weaving technology. The bending modulus of the thermosetting matrix material was changed by mixing modifier into it. The Seemann Corporation Resin Infusion Molding Process was used for infusion. Later, the deformation behavior of adaptive fiber-reinforced plastics was characterized. Results revealed that the maximum deformations of adaptive fiber-reinforced plastics with resin and modifier at a mixing ratio of 9:1 and 8:2 were increased to 34% and 63%, respectively, compared to adaptive fiber-reinforced plastics infiltrated by the reference resin. The maximum deformation speed during heating and cooling of adaptive fiber-reinforced plastic with the mixing ratio of resin and modifier at a value of 8:2 were 41.17 mm/s and 26.89 mm/s, respectively.


Materials ◽  
2015 ◽  
Vol 8 (4) ◽  
pp. 1442-1458 ◽  
Author(s):  
Seong-Cheol Lee ◽  
Joung-Hwan Oh ◽  
Jae-Yeol Cho

Sign in / Sign up

Export Citation Format

Share Document