scholarly journals Submerged Membrane Photo Reactor (SMPR) with Simultaneous Photo Degradation and TiO2 Catalyst Recovery for Efficient Dyes Removal

2021 ◽  
Vol 21 (2) ◽  
pp. 225
Author(s):  
Dessy Ariyanti ◽  
Filicia Wicaksana ◽  
Wei Gao

In this study, a polyvinylidene difluoride (PVDF) hollow fiber membrane module incorporated with TiO2 was submerged into a photocatalytic reactor to create a hybrid photocatalysis with membrane separation process (a submerged membrane photoreactor, SMPR), for advanced dyes wastewater treatment. The SMPR performance was assessed by the degradation of single component Rhodamine B (RhB) and degradation of mixed dyes (RhB and Methyl orange (MO)) in a binary solution. Several operational parameters such as the amount of catalyst loading, permeate flux, and the effect of aeration were studied. Fouling tendency on the membrane was also investigated to determine the optimum operating conditions. The results show that the synergetic effect of the low catalyst loading and permeate flux creates the environment for optimum light penetration for high photocatalytic activity as the hybrid system with low catalyst loading (0.5 g/L) and 66 L/m2h of flux with aeration at 1.3 L/min has proven to increase the photocatalysis performance by 20% with additional catalyst recovery. In addition, applying the low catalyst loading and flux permeate with aeration brings minimal fouling problems.

2021 ◽  
Vol 16 (3) ◽  
pp. 673-685
Author(s):  
D. Hadj Bachir ◽  
Hocine Boutoumi ◽  
H. Khalaf ◽  
Pierre Eloy ◽  
J. Schnee ◽  
...  

TiO2 pillared clay was prepared by intercalation of titan polyoxocation into interlamelar space of an Algerian montmorillonite and used for the photocatalytic degradation of the linuron herbicide as a target pollutant in aqueous solution. The TiO2 pillared montmorillonite (Mont-TiO2) was characterized by X-ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), X-Ray fluorescence (XRF), scanning electronic microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), Fourier transformed infra-red (FT-IR), specific area and porosity determinations. This physicochemical characterization pointed to successful TiO2 pillaring of the clay. The prepared material has porous structure and exhibit a good thermal stability as indicated by its surface area after calcination by microwave. The effects of operating parameters such as catalyst loading, initial pH of the solution and the pollutant concentration on the photocatalytic efficiency and COD removal  were evaluated. Under initial pH of the solution around seven, pollutant concentration of 10 mg/L and 2.5 g/L of catalyst at room temperature, the degradation efficiency and COD removal of linuron was best then the other operating conditions. It was observed that operational parameters play a major role in the photocatalytic degradation process. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Azry Borhan ◽  
Muhammad Muhibbudin Mat Johari

Monoethanolamine (MEA) has been vastly used for the removal of carbon dioxide (CO2) in natural gas processing plant. However, during the absorption-desorption process and maintenance activities, a small amount of amine get carries over and discharged into the effluent wastewater stream. Due to its high Chemical Oxygen Demand (COD) and require large volume of water for dilution, therefore treatment of MEA contaminated wastewater is a major concern in most amine sweetening plants. In this research, MEA wastewater generated from PETRONAS Fertilizer Kedah Sdn. Bhd (PFK) was treated via AFC99 tubular thin film composite polyamide Reverse Osmosis (RO) membrane. The effect of operating parameter (transmembrane pressure (TMP), feed concentration and pH) towards permeate flux and MEA rejection were studied to obtain the optimum operating conditions. Experimental results showed that AFC99 membrane is able to reject MEA up to 98% when operated at TMP of 20 bars, feed concentration of 300 ppm and pH of 4. This work shows that the RO membrane was feasible and desirable to be used for removal of MEA contaminants from wastewater. Besides, the treated water fulfills the watering standards.


2015 ◽  
Vol 1113 ◽  
pp. 703-709 ◽  
Author(s):  
Siti Khatijah Jamaludin ◽  
Ku Halim Ku Hamid ◽  
Hazimah Abu Hassan ◽  
Ayub Md Som ◽  
Zulina Maurad ◽  
...  

Dihydroxystearic acid (DHSA) is perceived to be of significant value to various types of industries, especially the oleochemical industry. It is produced by reacting palm-based crude oleic acid (OA) with formic acid and hydrogen peroxide through thein situepoxidation-dihydroxylation, a multistep reaction process. Optimization of the reaction’s operating conditions with respect to the selectivity of DHSA was conducted via the Taguchi method of optimization. The selectivity of DHSA was determined based on gas chromatography (GC) analysis. The signal-to-noise (S/N) ratio analysis procedure in Taguchi method revealed that the optimum operating conditions for the production of crude DHSA with respect to its selectivity were found to be: catalyst (sulphuric acid) loading at 0.5 gm, formic acid-to-oleic acid unsaturation mole ratio of 1:1, hydrogen peroxide-to-oleic acid unsaturation mole ratio of 0.75:1 and reaction temperature: 85°C. ANOVA tested at 90% confidence level revealed that reaction temperature and catalyst loading highly affect the selectivity of DHSA. The selectivity of DHSA was improved to 97.2% by applying the optimum operating conditions as obtained by Taguchi method.


Author(s):  
Nina Zhou ◽  
A. G. Agwu Nnanna

Low pressure driven ultrafiltraion (UF) processes has been applied in various industries due to its economical and easy operated benefits. Hollow fiber membrane is one of the most used membrane configuration in industry, membrane fouling is the major challenge for widely usage. Most of the investigation of UF was carried out by experiments to determine the effect of different operating conditions on permeate flux. However, experiments provide limited insight information on the membrane performance. In addition, the prediction of permeate flux under different operating conditions is necessary for experimental design and optimization. The purpose of the present study is to develop a numerical model to simulate the UF process and investigate the UF mechanism. A numerical model was developed using commercial CFD package (FLUENT). The effects of various operating conditions on permeate flux were determined by experiments and simulations, the comparison of the experimental and CFD results shows good agreements. Controlling membrane fouling will maintain a high productivity. The simulations were carried out to investigate the efficiency of removing accumulated particles on membrane surface by installing spacer filaments in membrane channels. The results suggested that the zigzag type spacer has d/h = 0.5 and l/h = 5 is more economical and efficient in reducing fouling.


Author(s):  
Maryam Ibrahim Chasib ◽  
Raghad Fareed Qasim

This research presents the design procedure for liquid – liquid hydrocyclone to separate kerosene – water emulsion. It studies the effects of varying feed flow rate (6, 8, 10, and 12 l/min), inlet kerosene concentration (250, 500, 750, 1000, and 1250 ppm) , and split ratio (0.1, 0.3, 0.5, 0.7, and 0.9) on the outcomes; separation efficiency and pressure drop ratio . This study used factorial experimental design assisted with Minitab program to obtain the optimum operating conditions. It was shown that inlet concentration of 250 ppm, 12 l/min inlet flow rate, and 0.9 split ratio gave 94.78 % as maximum separation efficiency and 0.895 as minimum pressure drop ratio.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
S. H. You ◽  
C. T. Wu

An ultrafiltration (UF) membrane process was employed to treat the secondary effluent discharged from a manufacturing of thin film transistor-liquid crystal display (TFT-LCD) in this study. A bench-scale system was performed to evaluate the fouling removal of a UF membrane with coated titanium dioxide (TiO2) nanoparticles under UV irradiation. The operating pressure and feed temperature were controlled at 300 KN/m2and 25°C, respectively. It was found that the optimum operating conditions were attained with TiO2concentrations of 10 wt% for both 5 KD and 10 KD MWCO. Continuous UV irradiation of 5 KD MWCO improved the permeate flux rate from 45.0% to 59.5% after 4 hours of operation. SEM-EDS analysis also showed that the photocatalytic effect had reduced the average thickness of cake fouling on the membrane from 6.40 μm to 2.70 μm for 5 KD MWCO and from 6.70 μm to 3.1 μm for 10 KD MWCO. In addition, the membrane contact angle was reduced from 54° to 44°. The photocatalytic properties of TiO2apparently increased the hydrophilicity of the membrane surface, thereby reducing membrane fouling.


2019 ◽  
Vol 46 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Anirban Banik ◽  
Suman Dutta ◽  
Tarun Kanti Bandyopadhyay ◽  
Sushant Kumar Biswal

The paper investigates increasing permeate flux (%) of the disc membrane which can improve the quality of rubber industrial effluent of Tripura. Response surface methodology was used to optimize the independent influencing parameters to improve the permeate flux. The effect of different influencing parameters like operating pressure, membrane pore size, and inlet feed velocity on membrane permeate flux were studied to determine the optimum operating conditions within the predefined boundary. The experiments were pre-planned and designed according to central composite rotatable design, and second-order polynomial regression model was developed for regression and analysis of variance study. Results show the membrane has maximum permeate flux (%) when the operating pressure is 14.50 Pa, pore size is 0.20 μm, and inlet feed velocity is 2.10 m/s. The Pareto analysis in the study established that the inlet velocity was the most influential parameter in the model equation.


2013 ◽  
Vol 11 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Seema Singh ◽  
Vimal Chandra Srivastava ◽  
Indra Deo Mall

Abstract This paper reports multistep optimization studies on electrochemical (EC) treatment of textile wastewater containing three dyes namely basic orange 30, basic violet 16 and basic green 4 using an aluminum electrode. Chemical oxygen demand (COD) and color removal efficiencies were maximized in a batch EC experimental reactor. In first step, Plackett–Burman (PB) design was used to sort most effective factors amongst the various factors namely current density (j), time (t), electrode gap (g), temperature (T), initial pH (pHo) and NaCl salt concentration (m) that affected the removal efficiency. In the next step, steepest accent/descent method and Box–Behnken (BB) design methods were utilized to evaluate the optimum electrochemical conditions. In BB design, three operational parameters, namely j: 117.64–196.07 A/m2; t: 150–210 min and pHo: 3.5–5.5 were taken as input parameter whereas COD removal (Y1) and color removal (Y2) were taken as responses of the system. At the optimum operating conditions of j = 185.30 A/m2, t190 min and pHo 5, more than 70.5% COD and 98.2% color removal efficiencies were observed. Field emission scanning electron microscopy of aluminum electrodes, scum and sludge has been carried out to understand the EC mechanism.


2017 ◽  
Vol 18 (3) ◽  
pp. 862-874 ◽  
Author(s):  
S. G. Arhin ◽  
N. Banadda ◽  
A. J. Komakech ◽  
W. Pronk ◽  
S. J. Marks

Abstract In order to optimize the operating conditions for a combined polyaluminum chloride (PACl) coagulation/flocculation and ultrafiltration process for treating potable water, the main, second order and interaction effects of PACl dose and flocculation retention time (FRT) on permeate turbidity, UV254 and membrane permeability were investigated using a 100 kDa hollow fiber membrane operated in the dead-end mode. A multilevel factorial design was used to determine the relevant ranges of the two factors for optimization. A 22 central composite design (CCD) was then used to develop mathematical correlation models for the optimum operating conditions. The main effect of PACl dose was the most significant factor on all the responses. For permeability, both the main effect of FRT and FRT–PACl dose interactions were found to be insignificant. The optimum PACl dose and FRT for the feed water were 20 mg/L and 14 min, respectively. Corresponding permeate turbidity, UV254 and permeability were 0.15 ± 0.01 NTU, 0.003 ± 0.001 cm−1 and 62.0 ± 9.52 Lm−2 h−1 bar−1, respectively. Experimental validation runs confirmed the reliability of the predicted optimal conditions thus implying that CCD models can be used to predict/optimize the quality and quantity of permeate from hybrid coagulation–ultrafiltration systems for potable water treatment.


Sign in / Sign up

Export Citation Format

Share Document