scholarly journals Experimental and Simulation investigations of Micro Flexible Deep Drawing Using Floating Ring Technique

2018 ◽  
Vol 14 (3) ◽  
pp. 20-31
Author(s):  
Zaid H. Mahmood ◽  
Ihsan K. Irthiea ◽  
Kadum A. Abed

Micro metal forming has an application potential in different industrial fields. Flexible tool-assisted sheet metal forming at micro scale is among the forming techniques that have increasingly attracted wide attention of researchers. This forming process is a suitable technique for producing micro components because of its inexpensive process, high quality products and relatively high production rate. This study presents a novel micro deep drawing technique through using floating ring as an assistant die with flexible pad as a main die. The floating ring designed with specified geometry is located between the process workpiece and the rubber pad. The function of the floating ring in this work is to produce SS304 micro cups with profile radius precision as required as possible. The finite element simulations are accomplished using the commercial code Abaqus/Standard. In order to verify the simulation models, micro deep drawing experiments are carried out using a special set up developed specifically to meet the requirements of the simulations. The results revealed that the proposed technique is feasible to be adopted for producing micro cups with remarkable application capability in miniaturization technology.

2018 ◽  
Vol 14 (3) ◽  
pp. 20-31 ◽  
Author(s):  
Zaid H. Mahmood ◽  
Ihsan K. Irthiea ◽  
Kadum A. Abed

Micro metal forming has an application potential in different industrial fields. Flexible tool-assisted sheet metal forming at micro scale is among the forming techniques that have increasingly attracted wide attention of researchers. This forming process is a suitable technique for producing micro components because of its inexpensive process, high quality products and relatively high production rate. This study presents a novel micro deep drawing technique through using floating ring as an assistant die with flexible pad as a main die. The floating ring designed with specified geometry is located between the process workpiece and the rubber pad. The function of the floating ring in this work is to produce SS304 micro cups with profile radius precision as required as possible. The finite element simulations are accomplished using the commercial code Abaqus/Standard. In order to verify the simulation models, micro deep drawing experiments are carried out using a special set up developed specifically to meet the requirements of the simulations. The results revealed that the proposed technique is feasible to be adopted for producing micro cups with remarkable application capability in miniaturization technology.


Author(s):  
Dietrich Bauer ◽  
Regine Krebs

Abstract For a deep drawing process some important controllable variables (factors) upon the maximum drawing force are analyzed to find a setting adjustment for these process factors that provides a very low force for the metal forming process. For this investigation an orthogonal array L18 with three-fold replication is used. To find the optimum of the process, the experimental results are analyzed in accordance with the robust-design-method according to Taguchi (Liesegang et. al., 1990). For this purpose, so-called Signal-to-Noise-ratios are calculated. The analysis of variance for this S/N-ratios leads to a mathematical model for the deep drawing process. This model allows to find the pressumed optimal settings of the investigated factors. In the following, a confirmation experiment is carried out by using these optimal settings. The maximum drawing force of the confirmation experiment does not correspond with the confidence interval, which was calculated by analysis of variance techniques. So the predicted optimum of the process does not lead to a metal forming process with very low deep drawing force. The comparison with a full factorial plan shows that there are interactions between the investigated factors. These interactions could not be discovered by the used orthogonal array. Thus the established mathematical model does not describe the relation between the factors and deep drawing force in accordance with the practical deep drawing conditions.


Author(s):  
Tom Wurzler ◽  
Thomas Lindemann ◽  
Josefine Kistner ◽  
Patrick Kaeding

During the process of workpiece productions in metal forming industries, it is necessary to control the results of the reshaped piece to ensure its quality. A common procedure of metal plate forming processes is given by the application of an upper and lower die. Therefore, ribbed die configurations can be used. To simulate the forming process of metal workpieces, the Finite Element Method (FEM) is a feasible tool. In this paper, a parametric model of a ribbed die structure is developed with the specification that only small imperfections on the workpiece surfaces will appear after the forming process. The workpieces in this paper are plates with thickness values equal and greater than 20mm. Furthermore, the springback behaviour of the different workpieces will be in the main focus of the proposed analyses. The results of the simulations are used to developed different types of holder configurations instead of the lower die. This concept might further reduce the costs of forming processes of large metal plates.


Author(s):  
Marzyeh Moradi ◽  
M. Ravi Shankar

Effects of starting microstructure on deformation behavior of commercially pure Ni blanks during micro-deep drawing was studied utilizing microforming set up that sits inside the chamber of Scanning Electron Microscopy (SEM) enables in situ observation of material flow during deformation. Various microstructure fields were created in Ni blanks using Severe Plastic Deformation (SPD) and heat treatment. SEM based Digital Image correlation (DIC) technique was used to characterize the micromechanics of deformation and its relation to process outcomes/performance. Pre and post–deformation microstructure analysis was carried out by performing Orientation Imaging Microscopy (OIM) to track the microstructure evolution across the micro-formed blanks during deformation in order to identify the process anomalies originated from the characteristics of starting microstructure and its interaction with deformation mechanics. We showed that microstructurally graded sheets consisting of nano-grained/coarse-grained layers significantly improves the formability of micro-blanks and effectively delays strain localization and onset of instability/failure during micro-deep drawing.


2011 ◽  
Vol 473 ◽  
pp. 1008-1015 ◽  
Author(s):  
Zhen Yu Hu ◽  
Hanna Wielage ◽  
Frank Vollertsen

Due to size effects new challenges are involved in micro deep drawing compared to macro deep drawing. One of these challenges is that the limit drawing ratio in micro deep drawing becomes smaller than that in macro forming, which limits the application potential of micro deep drawing in an industrial context. In order to extend the application possibilities of micro deep drawing, investigations were carried out on this topic. Own previous work showed that the “tribological effect”, the “global flow behaviour effect” and the “local flow behaviour effect” are responsible for the lower forming limit in the micro range. In this paper, the flow behavior of thin foils is further investigated. Forming limit diagrams of Al99.5 and E-Cu foils with different thicknesses ranging from 20 μm to 100 μm were acquired using an optical measurement system. It was found that the forming limit of thin foils is lower than that of thicker foils. Further analysis indicates that this difference is due to the number of grains in the direction of thickness of the material: more grains give more grain boundaries, which allows more strain of the grains.


2007 ◽  
Vol 344 ◽  
pp. 333-339
Author(s):  
W.T. Zheng ◽  
Donato Sorgente ◽  
G. Palumbo ◽  
Luigi Tricarico ◽  
Li Mei Ren ◽  
...  

Using the optimum blank in sheet metal forming process not only can decrease the material wasting but also avoid possible defects such as local severe thinning, wrinkling and fracture. Since it is practical technology for industrial production, many blank optimization methods have been proposed and their validity was verified by some forming tests of typical or complicated components. However, all the forming tests were carried out at room temperature or under isothermal condition. In present work, a blank optimization method was employed to evaluate its efficiency in deep drawing of rectangular magnesium alloy cups under non-isothermal condition. It is proved by experiment that the employed blank optimization method can predict successfully the optimum initial blank shape for the component with specified shape and dimension.


Author(s):  
Jie Xu ◽  
Bin Guo ◽  
Debin Shan ◽  
Baishun Li

Micro forming technology becomes a promising approach to fabricate micro-parts due to its advantages of high productivity, low production cost, good product quality and mechanical properties, and near net or net shape characteristics. However, the deformation behaviors of material change and the so-called size effect occurs when the part dimension is decreased to micro-scale. To analyze the quality of micro-parts, the material flow stress, anisotropy, ductility and formability in micro-scale need to be considered. In the paper, micro tensile and micro deep drawing tests of Ti foils were used and the size effects on deformation behavior and formability of micro sheet metal forming were studied. The results show that the flow stress of Ti foils is related with foil thickness and grain size. The fracture behaviors also have been changed from shear dimple to slip separation with the decrease of foil thickness. The formability of micro deep drawing becomes worse with the decrease of micro cup dimension and the increase of grain size.


2012 ◽  
Vol 628 ◽  
pp. 123-127
Author(s):  
Zhi Gao Luo ◽  
Jun Li Zhao ◽  
Xu Dong Li ◽  
Jing Jing Zhang ◽  
Ying Qing Shao

In this paper, metal stamping deep drawing forming process was simulated by Abaqus software. first of all, metal deep drawing forming for finite element modeling and analysis. Then the simulation results of drawing parts metal forming were analyzed. Include the analysis of stress-strain changes over time and the most serious regional. To determine the position easy to crack in the process of metal drawing parts stamping. Finally, by stamping test to verify the position of the cracks by punching test whether compliance with the simulation results. Verify the accuracy of the Abaqus software in the process of stamping simulation. Verify the accuracy of the Abaqus software simulation in metal forming processes.


2015 ◽  
Vol 651-653 ◽  
pp. 1072-1077 ◽  
Author(s):  
Yasunori Harada ◽  
Minoru Ueyama

This paper deals with the formability of pure titanium sheet in square cup deep drawing. Pure titanium has very excellent corrosion resistance. In the metal forming process, pure titanium has very good ductility in cold forming. The normal anisotropy of pure titanium is very high. Therefore, the property is suitable to the sheet metal forming, such as deep drawing process. However, the most important problem is that the occurrence of seizure becomes remarkable in severe forming operations. Many investigations on the effect of processing conditions on the seizure of titanium were carried out. In the present study, the formability of pure titanium sheet in square cup deep drawing was investigated. For the prevention, pure titanium sheets were treated by heat oxide coating. The fresh and clean titanium is not in direct contact with the die during the forming due to the existence of the oxide layer. The material was pure titanium sheets of the JIS grade 2. The initial thickness of the blank was 0.5 mm in thickness. In the deep drawing process, the sheets were employed and a flat sheet blank is formed into a square by a punch. Forming of sheet by multi-stage deep drawing was tried. Various cups were drawn by exchanging the punch and die. The die was taper without a blankholder in the subsequent stages. The effects of the intermediate annealing and tool shape on the occurrence of seizure in square cup deep drawing were also examined. The square cups were successfully drawn by heat oxide coating. The coating of titanium sheet has sufficient ability in preventing the seizure in multi-stage deep drawing operation. The results of the present study revealed that the pure titanium square cups were successfully formed by using heat oxide coating treatment.


2014 ◽  
Vol 941-944 ◽  
pp. 1876-1881 ◽  
Author(s):  
Yue Zhao ◽  
Liang Luo ◽  
Zheng Yi Jiang ◽  
Xiao Ming Zhao ◽  
Di Wu

In the last few decades, there is a global interest in micro products, and micro forming of metals is a promising micro manufacturing method. However, a comprehensive understanding of this process is absent. Therefore, this study aims to investigate micro deep drawing process via experimental and analysis work. Simulation results are in good agreement with the experimental data. The comparison between the finite element method (FEM) simulation and experimental results shows the feasibility of FEM simulation for micro deep drawing process. This research also lays a fundament of investigating micro forming process, especially micro deep drawing.


Sign in / Sign up

Export Citation Format

Share Document