scholarly journals IN VITRO CYTOTOXIC AND APOPTOTIC EFFECT OF PASSIFLORA FOETIDA AGAINST CERVICAL CANCER CELLS AND ITS FOURIER TRANSFORM INFRARED PROFILING

Author(s):  
Dheeban Shankar ◽  
Basker S ◽  
Karthik S

  Objective: This study was aimed on the analysis of cytotoxic and apoptotic action of Passiflora foetida followed by identification of the functional groups responsible for the activity.Methods: In this study, cytotoxic and apoptotic effect of methanol extract of P. foetida were analyzed by treating HeLa cell line cultures with different concentrations of the extract (25, 50, 75, 100, and 125 μg/ml), and thereby the activity was ratified by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and propidium iodide staining. The functional groups of the bioactive compounds for the effectiveness of the treatment were known by Fourier transform infrared spectroscopy analysis (FTIR).Results: The cytotoxic activity was found to be increased in a dose-dependent manner with inhibitory concentration value of 21.55 μg/ml and showed an effective apoptosis. Further, FTIR analysis confirmed the presence of functional groups of alkaloids, flavonoids, saponins, steroids, terpenoids, phenols and cardiac glycosides which might be responsible for the aforesaid activity.Conclusion: The cytotoxic and apoptotic action of P. foetida was proved to be very effective, and the tenable functional groups were identified.

2014 ◽  
Vol 912-914 ◽  
pp. 1961-1964 ◽  
Author(s):  
Wei Zhang ◽  
Wen He Zhu ◽  
Yan Li ◽  
Jun Luo ◽  
Shi Jie Lv

Abstract: To investigate whether juglone could inhibits the proliferation on human cervical cancer cells (HeLa) in vitro. Cells were divided into control group, different concentration (10μM, 20μM, 50μM, 100μM and200μM) juglone groups for different durations. The viability of HeLa cells was detected by methyl thiazolyl tetrazolium (MTT) assay. The morphology changes of HeLa cells were observed by inverted microscope .The results showed that the viability of HeLa cells was decreased and the cell morphology was changed in a dose-dependent manner after treatment different concentration juglone for 24h when compared with control group. The results suggest that Juglone may be effective for the treatment of HeLa cells.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582091215 ◽  
Author(s):  
May N. Bin-Jumah ◽  
Monera Al-Abdan ◽  
Gadah Al-Basher ◽  
Saud Alarifi

Nanomaterials are extensively applied in various fields such as industry, medicine, and food and drugs due to their unique properties. In this study, gold nanoparticles were biosynthesized using leaf extract of Azadirachta indica and chloroauric acid salt. We have determined the cytotoxicity, genotoxicity, and apoptotic effect of green gold nanoparticles (gGNPs) on human normal (CHANG) and liver cancer (HuH-7) cells. Before exposure to cells, physiochemical characteristic of gGNPs was characterized using a transmission electron microscope and dynamic light scattering. Cytotoxicity of gGNPs was found dose-dependent, as it was confirmed using 2 methods, namely, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and neutral red uptake. The gGNPs provoked intracellular reactive oxygen species (ROS), lipid peroxide, and reduced total glutathione and mitochondrial membrane potential in CHANG and HuH-7 cells in a dose-dependent manner. We have observed that N-acetyl-l-cysteine inhibits the generation of ROS in both cells after exposure to gGNPs. DNA damaging effects of gGNPs were determined by comet assay, and the maximum DNA damage was observed at 700 µg/mL gGNPs for 24 hours. It was observed that HuH-7 cells are slightly more sensitive to gGNPs exposure than CHANG cells. In conclusion, cytotoxicity and apoptosis in CHANG and HuH-7 cells due to gGNPs were mediated through oxidative stress.


2011 ◽  
Vol 89 (12) ◽  
pp. 875-883 ◽  
Author(s):  
Xi Zhao ◽  
Yong-Lie Chao ◽  
Qian-Bing Wan ◽  
Xin-Min Chen ◽  
Peng Su ◽  
...  

Novel effective drugs are still urgently needed in the prevention and treatment of oral adenoid cystic carcinoma (ACC). In this study, we have assessed the antitumor potential and molecular mechanisms of flavokawain B (FKB) as a kava chalcone on the ACC-2 cell line in vitro. The results demonstrated that FKB could significantly inhibit the cell proliferation of ACC-2 in a dose-dependent manner that was associated with induced apoptosis and cell cycle G2-M arrest, and the half maximal inhibitory concentration (IC50) of flavokawain-B treatment for 48 h was estimated to be 4.69 ± 0.43 µmol/L. Mechanistically, FKB could induce the release of cytochrome c from mitochondria into the cytosol, and activate the cleavage of caspase-3 and, eventually, the poly(ADP-ribose) polymerase (PARP), in a dose-dependent manner, leading to marked apoptotic effect of ACC-2 cells. The apoptotic action of FKB was associated with the increased expression of proapoptotic proteins: Bim, Bax, Bak and a decreased expression of antiapoptotic Bcl-2. Among them, Bim expression was significantly induced by FKB, and knockdown of Bim expression by short-hairpin RNAs attenuated the inhibitory effect induced by FKB on ACC-2 cells. These results suggest Bim may be one of the potential transcriptional targets, and suggests the potential usefulness of FKB for the prevention and treatment of ACC.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 552
Author(s):  
Shifeng Zhao ◽  
Yuan He ◽  
Chungu Wang ◽  
Israa Assani ◽  
Peilei Hou ◽  
...  

Four new purified polysaccharides (PAP) were isolated and purified from the Enteromorpha prolifera by alkali extraction, and further characterization was investigated. Their average molecular weights of PAP-1, PAP-2, PAP-3, and PAP-4 were estimated as 3.44 × 104, 6.42 × 104, 1.20 × 105, and 4.82 × 104 Da, respectively. The results from monosaccharide analysis indicated that PAP-1, PAP-2, PAP-3 were acidic polysaccharides and PAP-4 was a neutral polysaccharide. PAP-1 and PAP-2 mainly consist of galacturonic acid, while PAP-3 and PAP-4 mainly contained rhamnose. Congo red test showed that no triple helical structure was detected in the four polysaccharides. The antioxidant activities were investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), Superoxide, and 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical assay. In vitro antitumor activities were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PAP-1 exhibited relatively stronger antioxidant activities among the four polysaccharides in a dose-dependent manner. At a concentration of 1.00 mg/mL, the antioxidant activities of PAP-1 on the DPPH radical scavenging rate, superoxide anion radical scavenging rate, and ABTS radical rate at 1.00 mg/mL were 56.40%, 54.27%, and 42.07%, respectively. They also showed no significant inhibitory activity against MGC-803, HepG2, T24, and Bel-7402 cells. These investigations of polysaccharides provide a scientific basis for the use of E. prolifera as an ingredient in functional foods and medicines.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


This trial research was performed to discuss the immune-influence of Melaleuca leucadendra ‘paper-bark tree’ dried leaves which is an important medical plant known in many regions in the world. The leaves were dissolved in a mixture of (ethanol + water) (3:1) mixture, then filtered, evaporated and dried under reduced pressure to obtain leaves extract. The macrophages of blood derived origin were provided from rats and mixed with three different leaves extracts doses in tissue culture plates and incubated then stained with fluorescent acridine orange and examined under fluorescent microscope to assess the phagocytic and killing potency. The wells contents were aspirated and assayed for nitric oxide and interleukin-2 levels. The results displayed an obvious increase in phagocytic, killing performance as well as nitric oxide and IL-2 level production than control in a dose dependent manner. The obtained results suggested the immune-stimulant impact of the paper-bark tree leaves.


2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin N. Nelson ◽  
Savannah G. Beakley ◽  
Sierra Posey ◽  
Brittney Conn ◽  
Emma Maritz ◽  
...  

AbstractCryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document