scholarly journals DESIGN AND PERFORMANCE VERIFICATION OF NEWLY DEVELOPED DISPOSABLE STATIC DIFFUSION CELL FOR DRUG DIFFUSION/PERMEABILITY STUDIES

Author(s):  
Ankit Kumar Yadav ◽  
Varun Garg ◽  
Monica Gulati ◽  
Parikshit Bansal ◽  
Kompal Bansal ◽  
...  

Objectives: The present study describes a disposable static diffusion cell for in vitro diffusion studies to achieve better results as compared to well existing Franz diffusion cell (FDC) in terms of the absence of bubbles, variable receptor compartment, ease of handling, and faster results.Materials and Methods: The cell consists of a cup-shaped donor compartment made of semi permeable that could be either cellophane membrane or, animal skin fitted to a rigid frame, which is supported on a plastic plate that contains a hole for the sample withdrawal. The receptor compartment is a separate unit, and it could be any container up to 500ml volume capacity. The most preferred receptor compartment is glass beaker. In the present study, goatskin was used as semi-permeable membrane and verification of its performance was carried out through diffusion studies using gel formulations of one each of the four-selected biopharmaceutical classification system (BCS) class drugs. Metronidazole, diclofenac sodium, fluconazole, and sulfadiazine were used as model drugs for BCS Class I, II, III, and IV, respectively.Results: The newly developed diffusion cell (NDDC) was found to provide faster and more reproducible results as compared to FDC. At the time interval of 24 h, the cell was found to exhibit a higher diffusion of metronidazole, diclofenac sodium, fluconazole, and sulfadiazine by 0.65, 0.65, 0.32, and 0.81 folds, respectively. The faster release obtained with NDDC was attributed to a larger surface area of skin as compared to that in FDC.Conclusion: It was concluded that better reproducibility of results could be achieved with NDDC.

Author(s):  
Thanushree H.R. ◽  
Kiran Kumar G B ◽  
Ankit Acharya

Diclofenac sodium has many side effects like nausea, vomiting, GIT disorders. These side effects can be reduced by converting into emulgel formulations. The emulgel formulation of Diclofenac Sodium was prepared by incorporation method, using span 20 and tween 20 as non-ionic surfactants, clove oil and cinnamon oil as penetration enhancers, Aloe vera as a gel base and sesame oil as a solvent. The prepared emulgel formulations were evaluated for compatibility study, physical examination, viscosity, spreadability, in vitro diffusion studies, various release kinetic studies and stability studies. In vitro diffusion studies were carried out using cellophane membrane, results showed that emulgel formulations (F2-F7) showed higher cumulative percent drug release (49-65%) compared to normal gel (48%) and marketed gel (35%). Results of in vitro diffusion studies showed that formulation F3 and F6 exhibited 64% and 65% drug release respectively over a period of 6 hrs. In conclusion, a physiochemical stable diclofenac emulgel was formulated, which could deliver significant amount of drug across the skin in steady-state manner for the prolong period of time in the treatment of osteoarthritis.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1771
Author(s):  
Bartosz Maciejewski ◽  
Vishnu Arumughan ◽  
Anette Larsson ◽  
Małgorzata Sznitowska

The following study is a continuation of the previous work on preparation of gastro-resistant films by incorporation of cellulose acetate phthalate (CAP) into the soft gelatin film. An extended investigation on the previously described binary Gelatin-CAP and ternary Gelatin-CAP-carrageenan polymer films was performed. The results suggest that the critical feature behind formation of the acid-resistant films is a spinodal decomposition in the film-forming mixture. In the obtained films, upon submersion in an acidic medium, gelatin swells and dissolves, exposing a CAP-based acid-insoluble skeleton, partially coated by a residue of other ingredients. The dissolution-hindering effect appears to be stronger when iota-carrageenan is added to the film-forming mixture. The drug release study performed in enhancer cells confirmed that diclofenac sodium is not released in the acidic medium, however, at pH 6.8 the drug release occurs. The capsules prepared with a simple lab-scale process appear to be resistant to disintegration of the shell structure in acid, although imperfections of the sealing have been noticed.


Author(s):  
Panna Thapa ◽  
Howard NE Stevens ◽  
Alan J Baillie

In vitro release of nicotine hydrogen tartrate (NHT) into phosphate buffer saline (PBS), pH 7.4 at 37°C was studied in a diffusion cell, which, with a minimal dissolution volume on the donor side, was intended to mimic the low hydration environment of the nasal mucosa. Lyophilisates prepared from different concentrations (0.25, 0.5, 1, 2 & 3% w/w) of Methocel K4MP solution and K100LVP, K15MP, K100MP solutions (1 & 2%) containing NHT were placed on the diffusion cell membrane which was maintained just in contact with the constantly agitated liquid phase of the receptor compartment. Samples were withdrawn at regular time intervals from the receptor compartment, replaced by fresh medium and analysed spectrophotometrically at 260nm after appropriate dilution. As controls, nicotine release profiles from NHT powder & aqueous solution, Methocel K solutions, and simple powder blends of K4MP were also measured. The nicotine release was dependent on the concentration of Methocel K polymer, whether the donor side of the cell was presented with a solution or lyophilisate of NHT in polymer. Nicotine release decreased with increasing polymer concentration (t50% = 25 min and 75 min for lyophilisate prepared from 1% and 3% w/w K4MP respectively). However at any polymer concentration, nicotine release was faster from solution than from lyophilisate. The difference in nicotine release between solution and lyophilisate became more prominent at higher polymer concentration. Interestingly, nicotine release was independent of Methocel K molecular weight. In vitro nicotine release took place by anomalous diffusion. Keywords: In vitro drug release; lyophilisation; nasal drug delivery; hydroxypropyl methylcellulose (HPMC), nicotine. DOI: 10.3126/kuset.v5i1.2848 Kathmandu University Journal of Science, Engineering and Technology Vol.5, No.1, January 2009, pp 71-86


1987 ◽  
Vol 58 (02) ◽  
pp. 744-748 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
J C Barbenel ◽  
C D Forbes

SummarySpontaneous platelet aggregation (SPA) was studied in human whole blood at 3, 5, 10, 20, 30, 40 and 60 minutes after venepuncture. Using a whole blood platelet counter, SPA was quantified by measuring the fall in single platelet count upon rollermixing aliquots of citrated blood at 37° C. The extent of SPA increased with the time after venepuncture, with a correlation coefficient of 0.819. The inhibitory effect of dipyridamole (Dipy) on SPA was studied: (a) 10 μM at each time interval; (b) 0.5-100 μM at 3 and 30 minutes and (c) 15 μM in combination with 100 μM adenosine, 8 μM 2-chloroadenosine (2ClAd, an ADP receptor blocker) and 50 μM aspirin. There was a rapid decrease in the inhibitory effect of Dipy with the time after venepuncture; the correlation coefficient was -0.533. At all the concentrations studied, Dipy was more effective at 3 minutes than at 30 minutes after venepuncture. A combination of Dipy with adenosine, 2ClAd or aspirin was a more effective inhibitor of SPA than either drug alone. However, when 15 μM Dipy and 10 μM Ad were added together, the inhibitory effect of Dipy was not increased significantly, suggesting that Dipy inhibits platelet aggregation independent of Ad. The increase in SPA with the time after venepuncture was abolished when blood was taken directly into the anticoagulant containing 5 μM 2ClAd. It is suggested that ADP released from the red blood cells is responsible for the increased platelet aggregability with the time after venepuncture and makes a serious contribution to the artifacts of in vitro platelet function studies.


Author(s):  
Mohammed Ibrahim ◽  
Alaa Zaky ◽  
Mohsen Afouna ◽  
Ahmed Samy

Carrier erythrocytes are emerging as one of the most promising biological drug delivery systems investigated in recent decades. Beside its biocompatibility, biodegradability and ability to circulate throughout the body, it has the ability to perform extended release system of the drug for a long period. The ultimate goal of this study is to introduce a new carrier system for Salbutamol, maintaining suitable blood levels for a long time, as atrial to resolve the problems of nocturnal asthma medication Therefore in this work we study the effect of time, temperature as well as concentration on the loading of salbutamol in human erythrocytes to be used as systemic sustained release delivery system for this drug. After the loading process is performed the carrier erythrocytes were physically and cellulary characterized. Also, the in vitro release of salbutamol from carrier erythrocytes was studied over time interval. From the results it was found that, human erythrocytes have been successfully loaded with salbutamol using endocytosis method either at 25 Co or at 37 Co . The highest loaded amount was 3.5 mg/ml and 6.5 mg/ml respectively. Moreover, the percent of cells recovery is 90.7± 1.64%. Hematological parameters and osmotic fragility behavior of salbutamol loaded erythrocytes were similar that of native erythrocytes. Scanning electron microscopy demonstrated that the salbutamol loaded cells has moderate change in the morphology. Salbutamol releasing from carrier cell was 43% after 36 hours in phosphate buffer saline. The releasing pattern of the drug from loaded erythrocytes showed initial burst release in the first hour followed by a very slow release, obeying zero order kinetics. It concluded that salbutamol is successfully entrapped into erythrocytes with acceptable loading parameters and moderate morphological changes, this suggesting that erythrocytes can be used as prolonged release carrier for salbutamol.


Sign in / Sign up

Export Citation Format

Share Document