A novel diffusion cell model for the in vitro assessment of transcutaneous breast cancer therapeutics: Effect of permeants on MCF-7 cells cultured within the receptor compartment

2010 ◽  
Vol 75 (3) ◽  
pp. 411-417
Author(s):  
Zoë Davison ◽  
Robert I. Nicholson ◽  
Stephen P. Denyer ◽  
Charles M. Heard
Drug Delivery ◽  
2015 ◽  
Vol 23 (4) ◽  
pp. 1152-1162 ◽  
Author(s):  
Ravi Gandhi ◽  
Nirav Khatri ◽  
Dipesh Baradia ◽  
Imran Vhora ◽  
Ambikanandan Misra

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Saavedra-Alonso Santiago ◽  
Zapata-Benavides Pablo ◽  
Mendoza-Gamboa Edgar ◽  
Chavez-Escamilla Ana Karina ◽  
Arellano-Rodríguez Mariela ◽  
...  

Background. The wt1 gene codes for a transcription factor that presents several protein isoforms with diverse biological properties, capable of positively and negatively regulating genes involved in proliferation, differentiation, and apoptosis. WT1 protein is overexpressed in more than 90% of breast cancer; however, its role during tumor progression is still unknown. Methodology. In this work, we analyzed the expression of WT1 isoforms in several breast cancer cells with different tumor marker statuses and an in vitro assay using MCF-7 cells cultured with long-term estrogen depletion (MCF-7 LTED cells) with the finality to mimic the process of switching from hormone-dependent to hormone-independent. Moreover, growth kinetics, sensitivity to tamoxifen, and relative expression analysis of ER and Her2/neu were performed. Results. Initially, the expression of 52-54 kDa protein isoform of WT1 in the breast cancer cell line ER (+) was detected by western blot and was absent in ER (-), and the 36-38 kDa protein isoform of WT1 was detected in all cell lines analyzed. The analysis of alternative splicing by RT-PCR shows that the 17AA (+)/KTS (-) isoform of WT1 was the most frequent in the four cell lines analyzed. In vitro, the MCF-7 cells in the estrogen depletion assay show an increase in the expression of the 52-54 kDa isoform of WT1 in the first 48 hours, and this was maintained until week 13, and later, this expression was decreased, and the 36-38 kDa isoform of WT1 did not show change during the first 48 hours but from week 1 showed an increase of expression, and this remained until week 27. Growth kinetic analysis showed that MCF-7 LTED cells presented a 1.4-fold decrease in cellular proliferation compared to MCF-7 cells cultured under normal conditions. In addition, MCF-7 LTED cells showed a decrease in sensitivity to the antiproliferative effect of tamoxifen ( p ≤ 0.05 ). Samples collected until week 57 analyzed by qRT-PCR showed an increase in the relative expression of the Her2/neu and ER. Conclusions. Modulation of protein isoforms showed differential expression of WT1 isoforms dependent on estrogen receptor. The absence of 52-54 kDa and the presence of the 36-38 kDa protein isoform of WT1 were detected in ER-negative breast cancer cell lines classified as advanced stage cells. Long-term estrogen depletion assay in MCF-7 cells increased the expression of the 36-38 kDa isoform and reduced the 52-54 kDa isoform, and these cells show an increase in the expression of tumor markers of ER and Her2/neu. MCF-7 LTED cells showed low proliferation and insensitivity to tamoxifen compared to MCF-7 cells in normal conditions. These results support the theory about the relationship of the 36-38 kDa isoform of WT1 and the absence of ER function in advanced breast cancer.


2020 ◽  
Vol 21 (14) ◽  
pp. 1528-1538
Author(s):  
Sarah Albogami ◽  
Hadeer Darwish ◽  
Hala M. Abdelmigid ◽  
Saqer Alotaibi ◽  
Ahmed Nour El-Deen ◽  
...  

Background: In Saudi Arabia, the incidence and mortality rates of breast cancer are high. Although current treatments are effective, breast cancer cells develop resistance to these treatments. Numerous studies have demonstrated that active compounds in plant extracts, such as the phenolic compound Rosmarinic Acid (RA), exert anti-cancer effects. Objective: We investigated the anticancer properties of methanolic crude extracts of seedlings and calli of Rosmarinus officinalis and Coleus hybridus, two Lamiaceae species. Methods: MCF-7 human breast cancer cells were treated with methanolic crude extracts obtained from plant calli and seedlings generated in vitro, and cell proliferation was evaluated. Transcriptional profiling of the seedling and callus tissues was also conducted. Results: The mRNA expression levels of RA genes were higher in C. hybridus seedlings than in R. officinalis seedlings, as well as in C. hybridus calli than in R. officinalis calli, except for TAT and C4H. In addition, seedling and callus extracts of both R. officinalis and C. hybridus showed anti-proliferative effects against MCF-7 cells after 24 or 48 h of treatment. Discussion: At a low concentration of 10 μg/mL, C. hybridus calli and seedling extracts showed the most significant anti-proliferative effects after 24 and 48 h of exposure (p < 0.01); controls (doxorubicin) also showed significant inhibition, but lesser than that observed with C. hybridus (p < 0.05). Results with R. officinalis callus and seedling extracts did not significantly differ from those with untreated cells. Conclusion: Methanolic extracts of R. officinalis and C. hybridus are potentially valuable options for breast cancer treatment.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


Author(s):  
G. Siva ◽  
S. Venkatesh ◽  
G. Prem Kumar ◽  
M. Muthukumar ◽  
T. Senthil Kumar ◽  
...  
Keyword(s):  

2021 ◽  
pp. 096032712110227
Author(s):  
S Kara-Ertekin ◽  
S Yazar ◽  
M Erkan

Pyrethroid pesticides are frequently used for household insect control of insects and in agriculture and livestock. Flumethrin is a pyrethroid that is used against ectoparasites in many animals. The goal of this study was to evaluate the cytotoxic, apoptotic, genotoxic, and estrogenic effects of flumethrin on the mammalian breast cancer cell line (MCF-7). Compared with control groups, a dose-dependent decrease was observed in cell viability at concentrations of 100 µM and higher. The cytotoxic and apoptotic effects detected by LDH assay and AO/EtBr staining increased significantly at a concentration of 1000 µM. The expression of BCL2, which is an anti-apoptotic gene, significantly decreased, whereas BAX, TP53, and P21 expression significantly increased. The results of a comet assay indicated that flumethrin significantly changed tail length, tail % DNA, tail moment, and Olive tail moment in concentrations above 1 and 10 µM. In addition, a 0.1 µM concentration of flumethrin affected ERα receptor mediated cell proliferation and increased transcription of estrogen-responsive pS2 (TFF1) and progesterone receptor (PGR) genes. As a result, flumethrin-induced apoptosis and cytotoxicity at a high concentration, while induced genotoxicity even at lower concentrations. Flumethrin is an endocrine disrupting insecticide with estrogenic effects at very low concentrations.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Md Rizwanullah ◽  
Khalid Umar Fakhri ◽  
Mohd Moshahid Alam Rizvi ◽  
...  

In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.


Sign in / Sign up

Export Citation Format

Share Document