Formulation Development of Diclofenac Sodium Emulgel Using Aloe vera Gel for Transdermal Drug Delivery System

Author(s):  
Thanushree H.R. ◽  
Kiran Kumar G B ◽  
Ankit Acharya

Diclofenac sodium has many side effects like nausea, vomiting, GIT disorders. These side effects can be reduced by converting into emulgel formulations. The emulgel formulation of Diclofenac Sodium was prepared by incorporation method, using span 20 and tween 20 as non-ionic surfactants, clove oil and cinnamon oil as penetration enhancers, Aloe vera as a gel base and sesame oil as a solvent. The prepared emulgel formulations were evaluated for compatibility study, physical examination, viscosity, spreadability, in vitro diffusion studies, various release kinetic studies and stability studies. In vitro diffusion studies were carried out using cellophane membrane, results showed that emulgel formulations (F2-F7) showed higher cumulative percent drug release (49-65%) compared to normal gel (48%) and marketed gel (35%). Results of in vitro diffusion studies showed that formulation F3 and F6 exhibited 64% and 65% drug release respectively over a period of 6 hrs. In conclusion, a physiochemical stable diclofenac emulgel was formulated, which could deliver significant amount of drug across the skin in steady-state manner for the prolong period of time in the treatment of osteoarthritis.

2014 ◽  
Vol 2 (01) ◽  
pp. 68-75 ◽  
Author(s):  
Swapnil J. Kodalkar ◽  
Rohan A. Khutale ◽  
Sachin S. Salunkhe ◽  
Sachin S. Mali ◽  
Sameer J. Nadaf

In present study, the attempts have been made to formulate sustained release tablets of lornoxicam by direct compression method. Based on viscosity grades different proportions of hydrophilic polymers (HPMC K4M, HPMC K15M, HPMC K100M) are used for preparation of lornoxicam sustained release matrix tablet. The drug excipient mixtures were subjected to preformulation studies comprising of micromeritic properties. The tablets were subjected to various studies like as physicochemical studies, in vitro drug release, kinetic studies, etc. FTIR studies shown there was no interaction between drug and polymers. The physicochemical properties of tablets were found within the limits. Lornoxicam is a first generation analgesic, inflammatory and antipyretic agent used in relieving symptoms of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, acute sciatica and low back pain. From developed formulations batch F1 have shown zero order drug release behavior and prolong drug release over a period of 12 h which was deemed as suitable and optimum formulation for sustained drug delivery. Results of the present study indicated the suitability of the low viscous polymer in the proportion of (drug:polymer) 1:1 in the preparation of sustained release formulation of lornoxicam.


Author(s):  
Anjali P.B ◽  
Jawahar N. ◽  
Jubie S. ◽  
Neetu Yadav ◽  
Selvaraj A. ◽  
...  

Background: : Epilepsy is a genuine neurological turmoil that effects around 50 million individuals around the world. Practically 30% of epileptic patients experience the ill effects of pharmaco-obstruction, which is related with social seclusion, subordinate conduct, low marriage rates, joblessness, mental issues and diminished personal satisfaction. At present accessible antiepileptic drugs have a restricted viability, and their negative properties limit their utilization and cause challenges in patient administration. Gabapentin 1-(aminomethyl)cyclohexane acetic acid, Gbp , (trade name Neurontin), a structural analog of γ-aminobutyric acid (GABA), BCS class 3 drug with having permeability issues. Objective: This work was an attempt to formulate and characterize a new approach to treat epilepsy by targeting to Phospholipase A2 Enzyme through Nanostructured Lipid Carrier. Methods: Docking studied carried out using Accelrys Discovery studio 4.1 Client and gabapentin and phosphotidylcholine were conjugated through chemical conjugation. Nanostructured lipid carrier (NLC) was prepared using hot homogenization technique. Results: The libdock score of Gabapentin- Phosphotidylcholine conjugate (192.535) were found to be more than Gabapentin (77.1084) and Phosphotidylcholine (150.212). For the optimized formulation the particle size (50.08), zeta potential (-1.48), PDI (0.472) and entrapment efficiency (77.8) was observed. The NLC was studies for in-vitro drug release studies and release kinetics. Finally found that the drug release from the NLC followed Higuchi release kinetic and the mode of drug release from the NLC was found to be Non- Fickian diffusion. Conclusion: The formulated Nanostructured lipid carrier of Gabapentin-Phosphotidylcholine conjugate may be able to use to prevent seizure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kamlesh Wadher ◽  
Shital Dabre ◽  
Anjali Gaidhane ◽  
Sagar Trivedi ◽  
Milind Umekar

Abstract Background Pongamia pinnata (Fabaceae) is among those categories of plants mentioned in Ayurveda and traditionally known to use in several types of disease and disorders. The objective of the present work was to investigate the anti-psoriatic activity of Pongamia pinnata leaves extracts in Herbal gel formulation. Results Hydroalcoholic leaves extract of Pongamia pinnata was first subjected to phytochemical screening and quantification of phytoconstituents. Herbal gel was prepared containing Pongamia pinnata extracts using Carbopol 934 as gelling agent. The prepared gel formulations were studied for pH, viscosity, Spreadability and in vitro diffusion studies. The imiquimod-induced psoriatic mouse model, showed a prominent anti-psoriatic activity of the extract as evident through index grading. Treatment with extract confirmed a noteworthy reduction in psoriasis in the treated groups as there was a considerable diminution in the thickness and scaling of skin. Conclusions Lack of proper treatment and disadvantages associated with allopathic medicines pave the way to extensive research in natural products with anti-psoriatic activity. The present research scientifically justified the anti-psoriatic activity of the Hydroalcoholic extracts of Pongamia pinnata leaves.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 110
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Arshad Khan ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.


Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


2021 ◽  
Vol 09 ◽  
Author(s):  
Harshad S Kapare ◽  
Sathiyanarayanan L ◽  
Arulmozhi S ◽  
Kakasaheb Mahadik

Background: Honey bee propolis is one of the natural product reported in various traditional systems of medicines including Ayurveda. Caffeic acid phenethyl ester (CAPE) is an active constituent of propolis which is well known for its anticancer potential. The therapeutic effects of CAPE are restricted owing to its less aqueous solubility and low bioavailability. Objective: In this study CAPE loaded folic acid conjugated nanoparticle system (CLFPN) was investigated to enhance solubility, achieve sustained drug release and improved cytotoxicity of CAPE. Methods: Formulation development, characterization and optimization were carried out by design of experiment approach. In vitro and in vivo cytotoxicity study was carried out for optimized formulations. Results: Developed nanoparticles showed particle size and encapsulation efficiency of 170 ± 2 - 195 ± 3 nm and 75.66 ± 1.52 - 78.80 ± 1.25 % respectively. Optimized formulation CLFPN showed sustained drug release over a period of 42 h. GI50 concentration was decreased by 46.09% for formulation as compared to CAPE in MCF-7 cells indicating targeting effect of CLFPN. An improved in vitro cytotoxic effect was reflected in in-vivo Daltons Ascites Lymphoma model by reducing tumor cells count. Conclusion: The desired nanoparticle characteristic with improved in vivo and in vitro cytotoxicity was shown by developed formulation. Thus it can be further investigated for biomedical applications.


Author(s):  
Farhana Sultan ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Microsponge containing Luliconazole (LCZ) with different proportion of drug:polymer (Ethyl cellulose and Eudragit RS 100) were obtained efficiently using Quasi-emulsion solvent diffusion method. Luliconazole is an anti-fungal drug used for the topical delivery. The purpose of the microsponge formulation is to control the release of LCZ drug to the skin through Microsponge Delivery System (MDS) known to be the novel technique which overcome the maximum concentration of active ingredient, frequency doses, and skin irritation. The prepared microsponges were examined using drug content, % production yield, % entrapment efficiency and in-vitro drug release. The formulation were subjected to in-vitro drug release studies for 6 hr in which it was concluded that Ethyl cellulose microsponges formulated by drug:polymer (1:1) and Eudragit RS 100 microsponges formulated by drug:polymer (1:3) showed maximum controlled release i.e., Increase in drug:polymer ratio (1:1 to 1:9) increased the production yield and entrapment efficiency of microsponges using Ethyl cellulose with no significant effect for Eudragit RS 100.Therefore, both formulation F1 and F2 was dispersed in carbopol gel preparation for controlled delivery of LCZ to the skin. Various physical parameters like pH, spreadability, viscosity and in-vitro drug diffusion studies were evaluated for the prepared gel formulations. Microsponge gel formulation i.e., FG1 showed better results for controlled release of 89.40% as compared to FG2 i.e., 92.18% over the period of 12 hrs which is performed in Franz Diffusion Cell. On basis of in-vitro diffusion studies for LCZ gel formulation, microsponges using Ethyl cellulose (FG1) was found to be best for its controlled release of LCZ for 12 hrs and followed zero order kinetics. Hence, formulated LCZ loaded gel have potential to treat fungal infections i.e., tinea pedis, tinea cruris and tinea corporis.


Author(s):  
KUMAR BABU PASUPULETI ◽  
VENKATACHALAM A. ◽  
BHASKAR REDDY KESAVAN

Objective: This study is to formulate Nebivolol into a Pulsatile liquid, solid composite compression coated tablet, which will delay the release of the drug in early morning hypertension conditions. Methods: The liquid, solid composite tablet was formulated and compressed with the ethylcellulose coating polymer. The percent in vitro drug release of the liquid solid composite compressed tablet was tested. Based on disintegration time and wetting time, the LCS2, LCS3, LSC6, LCS7 and LCS12 formulations were found to be the optimized solid-liquid compacts fast-dissolving core tablet formulations, which may be excellent candidates for further coating with polymer to transfer into press coated pulsatile tablet formulations. Coating the core tablet with varying ethyl cellulose concentrations resulted in five different formulations of the pulsatile press-coated tablet (CT1, CT2, CT3, CT4, CT5). In vitro drug release, in vitro release, kinetic studies, in vivo pharmacokinetic and stability tests were all performed for the prepared pulsatile press coated tablet. Results: CT3 tablets are coated with ethyl cellulose polymer, which shows maximum controlled drug release from the core tablet i.e. 96.34±1.2% at 8th h. It shows there was an efficient delay in drug release form core tablet i.e. up to 3 h, followed by the maximum amount of drug release of 96.34±2.4 at 8h. Which shows the core drug will be more efficiently protected from the gastric acid environment 1.2 pH, duodenal environment 4.0 pH and release drug only in the small intestine. Conclusion: According to the findings, CT3 Pulsatile press-coated tablet increased the bioavailability of Nebivolol by 3.11 percent.


Sign in / Sign up

Export Citation Format

Share Document