scholarly journals FORMULATION AND EVALUATION OF PH-DEPENDENT COLON-TARGETED TABLETS OF RIFAXIMIN BY DESIGN OF EXPERIMENT

Author(s):  
RAWOOF MD ◽  
RAJNARAYANA K ◽  
AJITHA M

Objective: The research is designed at formulating and evaluating pH-sensitive rifaximin colon-targeted tablets for targeted action in proximal colon. Method: The colon-targeted tablets are done by granulation of three levels of polymers such as Eudragit L30D, Carbopol 974P, and ethyl cellulose. The evaluation parameters such as swelling studies, drug dissolution, in vitro drug release studies, stability, and the Fourier transform infrared studies carried out for optimized formulations. Results: Physicochemical parameters of all the 27 formulations (RF1-RF27) evaluated and RF21 is chosen for further investigation based on weight variation, hardness, drug content, and swelling index. The in vitro drug release studies indicate that the optimized formulation RF21 released 98.75% drug within 24 h. The stability studies indicate that the formulation is stable. Conclusion: An effective and stable pH-dependent rifaximin colon-targeted tablet formulated for the targeted treatment of bowel syndrome.


Author(s):  
MANIKIRAN S. S. ◽  
NAGAM SANTHI PRIYA ◽  
B. AUBINE MOLLY ◽  
LAKSHMI PRASANTHI NORI

Objective: This research focused on the design of fast dissolving herbal film of Eclipta Prostrate leaves extract for mouth ulcers. Methods: The extract of Eclipta Prostrata leaves was formulated as films by solvent casting method using various polymers viz., HPMC E5, HPMC E15, sodium alginate and PVA. The films were designed by using propylene glycol as a plasticizer, SSG as super disintegrate and honey as a sweetener. Furthermore, the films were evaluated for thickness, folding endurance, weight variation, % elongation, surface pH, % moisture uptake, % moisture loss, disintegration and in vitro drug release study. Results: The revealed that all the films were good in appearance and had a smooth texture. Out of all ten formulations, F3 and F5 disintegrated rapidly with a disintegration time of 27 and 32 seconds. The drug release studies revealed that all the formulations had a good release profile, but the F3 formulation showed rapid release i.e. 83.57% in 4 min. The stability studies revealed that the formulations F3 and F5 were found good with non-tackiness, easily separable and disintegrated at 29 and 33 sec respectively with no appearance and drug release. Conclusion: The research revealed that Eclipta prostrate leaves extract can be formulated into oral films for the treatment of mouth ulcers with improved bioavailability and expected patient compliance.



2014 ◽  
Vol 12 (2) ◽  
pp. 119-123
Author(s):  
MS Ashwini ◽  
Mohammed Gulzar Ahmed

The study was designed for the investigation of pulsatile device to achieve time or site specific release of Losartan potassium based on chronopharmaceutical considerations. The basic design involves the preparation of cross linked hard gelatin capsules by using formaldehyde, then the drug diluent mixture were prepared and loaded in, which was separated by using hydrogel plugs of different polymers of different viscosities. Prepared formulations were subjected to evaluation of various parameters like weight variation, percentage drug content, in vitro drug release and stability studies. Weight variation and percentage drug content results showed that they were within the limits of official standards. The in-vitro release studies revealed that the capsules plugged with polymer HPMC showed better pulsatile or sustained release property as compared to the other formulations. The stability studies were carried out for all the formulations and formulations F1 & F2 were found to be stable. Dhaka Univ. J. Pharm. Sci. 12(2): 119-123, 2013 (December) DOI: http://dx.doi.org/10.3329/dujps.v12i2.17610



Author(s):  
Rawoof MD ◽  
Rajnarayana K ◽  
Ajitha M

The main objective of the present study was to develop colon-targeted tablets of mesalazine by wet granulation method using 33 Response surface method with design of experiment software and HPMC K4M, Eudragit RL100, Ethyl cellulose and PVP K-30 used as pH dependent polymers. All the formulations (F1 to F27) were evaluated for the physicochemical parameters and were subjected to in vitro drug release studies. The amount of Mesalazine released from tablets at different time intervals was estimated by UV spectrophotometer. The formulation F26 released 98.16 % of mesalazine after 24 h, whereas marketed product drug release was 92.02 ± 2.15 after  24 h. From in vivo bioavailability studies, after oral administration of colon targeted tablet containing 400 mg mesalazine, the Cmax, Tmax, and AUC0–∞ of optimized formulation and marketed product was found to be 683.21 ± 0.03 ng/mL, 6.01 ± 0.04 h, 4150.12 ± 5.12 ng*h/mL and 445.34 ± 3.22 ng/mL, 4.00 ± 0.01 h, 3457.18 ± 5.32 ng*h/mL respectively. Cmax, Tmax and AUC values of optimized formulation were found to be significantly higher than of marketed product. The pH dependent tablet system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of mesalazine for the treatment of disease at colon region.



Author(s):  
GNANASEKARAN JOHN SELVARAJ ◽  
ARUL BALASUBRAMANIAN ◽  
KOTHAI RAMALINGAM

Objective: The present study was designed to develop a mucoadhesive tablet of pentoxifylline using the mucoadhesive natural polymer from the plant Manilkara zapota Linn. Methods: The tablets were formulated with three different concentrations of the isolated polymer and evaluated for thickness, weight variation, friability, hardness, swelling index, mucoadhesive strength and in vitro drug release. The swelling index was indirectly proportional to the mucoadhesive polymer of Manilkara zapota (MAPMZ) concentration. Results: The tablets formulated with a high concentration of MAPMZ showed good mucoadhesion strength in 5 min contact time. The in vitro drug release studies indicated that the drug release was directly proportional to MAPMZ concentration. The release kinetics indicated that the drug release was followed the zero-order. Conclusion: The MAPMZ showed the controlled release of pentoxifylline for a period of 12 h.



Author(s):  
Saddam C Shaikh ◽  
Dnyaneshwar Sanap ◽  
Dipak V Bhusari ◽  
Shirish Jain ◽  
Pooja P Kochar ◽  
...  

The objective of the present study was to formulate the gastro-retentive floating tablets containing Ibuprofen, which would remain in stomach and/or upper part of GIT for prolonged period of time. Floating systems have low bulk density so that they can float on the gastric juice in the stomach. Ibuprofen is an anti inflammatory drug.  On trial and error basis formulation design was done. Four different batches of floating tablets of Ibuprofen were prepared using HPMC, Xanthan gum, and gas generating agent sodium bicarbonate and citric acid. The tablets were characterized for the pre and post compression parameters such as friability, hardness, thickness, drug content, weight variation, in-vitro buoyancy studies and 13 hrs in-vitro drug release studies and the results were within the limits. From the results obtained, it was concluded that the optimized formulation F4 desired drug release properties and floating behavior.



2019 ◽  
Vol 9 (3) ◽  
pp. 51-59
Author(s):  
JESINDHA BEYATRICKS ◽  
, Dhananjaya

The aim of this study was to formulate and evaluate the oral fast-dissolving film of Vitamin B6 for the effective management of motion sickness and vomiting during pregnancy. Fast-dissolving films were prepared by the solvent-casting method using different polymers, HPMC-15 and Pullulan, along with Propylene glycol as a plasticizer. The Fourier-transform infrared study for the drug-polymer interaction was carried out. Evaluation of physical parameters such as physical appearance, surface texture, uniformity of weight, uniformity of strip thickness, surface pH, folding endurance, uniformity of drug content and percentage of moisture absorption were performed. Kinetic data analysis for the release study and the stability study were also performed. Results of uniformity of weight, thickness, folding endurance, surface pH, percentage drug content, tensile strength and percentage elongation of all the films were found to be satisfactory. The Fourier-transform infrared study indicated that there was no interaction between the drug and the polymers. The in-vitro drug release study showed that a better rate of drug release was achieved by formulations F4 and F8 compared with other formulations. The stability study did not show any significant difference in the external appearance, the drug content and the in-vitro drug release. In conclusion present study suggested that fast dissolving films has a better ability to cross the sublingual barrier at a faster rate, and hence the delivery system was found to be promising as it has the potential of overcoming the drawbacks associated with tablet formulations available in the market presently. Keywords: Fast-dissolving film, Vitamin B6, HPMC-15, Pullulan gum, Mango peel pectin, Crospovidone, solvent casting



2021 ◽  
Vol 18 ◽  
Author(s):  
Rana M.F. Sammour ◽  
Bappaditya Chatterjee ◽  
Muhammad Taher ◽  
Mohammed S.M. Saleh ◽  
Aliasgar Shahiwala

Background: Improved bioavailability of Aceclofenac (ACE) may be achieved through proniosomes, which is considered as one of the most effective drug delivery systems and is expected to represent a valuable approach for the development of a better oral dosage form as compared to the existing product. However, the carrier in this system plays a vital role to control the drug release and modulate drug dissolution. Accordingly, a comparative study between different carriers can give clear ideas on the selection of carriers to prepare ACE proniosomes. Objective: This study aims to evaluate the role of maltodextrin, glucose, and mannitol as carriers on in vitro and in vivo performance of Aceclofenac (ACE) proniosomes. Methods: Three formulations of proniosomes were prepared by the slurry method using the 100 mg ACE, 500 mg Span 60, 250 mg Cholesterol with 1300mg of different carriers, i.e., Glucose (FN1), Maltodextrin (FN2), and Mannitol (FN3). In vitro, drug release studies were conducted by the USP paddle method, while in vivo studies were performed in albino rats. Pure ACE was used as a reference in all the tests. Lastly, the results were analyzed using the High-Pressure Liquid Chromatography (HPLC) method, and data were evaluated using further kinetic and statistical tools. Results: No significant differences (p > 0.05) in entrapment efficiency (%EE) of FN1, FN2, and FN3 (82 ± 0.5%, 84 ± 0.66%, and 84 ± 0.34% respectively) were observed and formulations were used as such for further in vitro and in vivo evaluations. During in vitro drug release studies, the dissolved drug was found to be 42% for the pure drug, while 70%, 17% 30% for FN1, FN2, and FN3 respectively at 15 min. After 24 hrs, the pure drug showed a maximum of 50 % release while 94%, 80%, 79% drug release were observed after 24 hr for FN1, FN2, and FN3, respectively. The in vivo study conducted using albino rats showed a higher Cmax and AUC of FN1 and FN2 in comparison with the pure ACE. Moreover, the relative oral bioavailability of proniosomes with maltodextrin and glucose as carriers compared to the pure drug was 183% and 112% respectively. Mannitol based formulation exhibited low bioavailability (53.7%) may be attributed to its osmotic behavior. Conclusion: These findings confirm that a carrier plays a significant role in determining in vitro and in vivo performance of proniosomes and careful selection of carrier is an important aspect of proniosomes optimization.



Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.



Author(s):  
Parasuram Rajam Radhika ◽  
Nishala N ◽  
Kiruthika M ◽  
Sree Iswarya S

Objective: The present study was undertaken to prolong the release of orally administered drug. The aim is to formulate, develop, and evaluate theintragastric buoyant tablets of venlafaxine hydrochloride, which releases the drug in a sustained manner over a period of 12 hrs. Different formulationswere formulated using the polymers Carbopol 934 P, xanthan gum, hydroxypropyl methylcellulose (HPMC K100M) with varying concentration ofdrug: Polymer ratio of 1:1, 1:1.5, 1:2, in which sodium bicarbonate acts as gas generating agent, and microcrystalline cellulose as a diluent.Methods: The tablets were prepared by direct compression and evaluated for tablet thickness, weight variation, tablet hardness, friability, in vitrobuoyancy test, in vitro drug release and Fourier transform infrared spectroscopy. Formulations were evaluated by floating time, floating lag time and in vitro drug release. Dissolution profiles were subjected for various kinetic treatments to analyze the release pattern of drug.Results: It was found that drug release depends on swelling, erosion, and diffusion, thus following the non-Fickian/anomalous type of diffusion.Formulation F8 was considered as an optimized formulation for gastro retentive floating tablet of venlafaxine hydrochloride. The optimizedformulation showed sustained drug release and remained buoyant on the surface of the medium for more than 12 hrs. As the concentration of HPMCK100M increases in the formulation the drug release rate was found to be decreased. The optimized formulation was subjected for the stability studiesand was found to be stable as no significant change was observed in various evaluated parameters of the formulation.Conclusion: It can be concluded that floating drug delivery system of venlafaxine hydrochloride can be successfully formulated as an approach toincrease gastric residence time, thereby improving its bioavailability.Keywords: Venlafaxine hydrochloride, Intragastric buoyant, Floating drug delivery systems, Hydroxypropyl methyl cellulose K100M, Carbopol 934 P,Xanthan gum.



Sign in / Sign up

Export Citation Format

Share Document