scholarly journals VIWITHAN: A STANDARDIZED ASHWAGANDHA EXTRACT AMELIORATES OVALBUMININDUCED AIRWAY-INFLAMMATION AND OXIDATIVE STRESS IN MOUSE MODEL

Author(s):  
VASAVI HS ◽  
SUDEEP HV ◽  
RAMANAIAH ILLURI ◽  
SHYAMPRASAD K

Objective: Withania somnifera, commonly known as Ashwagandha, Indian ginseng, has been used in Ayurvedic and indigenous medicinal preparations for various disease conditions since long time. In the present study, we investigated the protective effects of Viwithan, a standardized proprietary extract from Ashwagandha roots, against airway-inflammation and oxidative stress modulation in an ovalbumin (OVA)-induced murine model of inflammation. Methods: Allergic asthma was initiated in BALB/c mice by sensitizing with OVA on days 1 and 14, followed by intranasal challenge with OVA on days 27, 28, and 29. Mice were administered Viwithan (200 and 400 mg/kg) by oral gavage before challenge. Then, mice were evaluated for the presence of airway inflammation, production of allergen-specific cytokine response, lung pathology, and oxidative stress modulation. Results: The results showed that treatment with Viwithan attenuated OVA-induced lung inflammation in mice. Viwithan significantly attenuated inflammatory cell infiltration into the bronchoalveolar lavage fluid and markedly reduced the levels of pro-inflammatory cytokines, interleukin-10, and transforming growth factor-β1 in lung tissues. Viwithan treatment considerably reduced the lung weight in OVA-sensitized mice. Viwithan markedly attenuated the OVA-induced generation of reactive oxygen species in lung tissues. Conclusion: Together, these results suggested that Viwithan alleviates OVA-induced airway-inflammation and oxidative stress, highlighting the potential of standardized Ashwagandha extract as a useful therapeutic agent for pulmonary fibrosis management.

Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 295 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Ya-Ling Chen ◽  
Ming-Chin Yu ◽  
Kuo-Wei Yeh ◽  
Szu-Chuan Shen ◽  
...  

Sesamol, isolated from sesame seeds (Sesamum indicum), was previously shown to have antioxidative, anti-inflammatory, and anti-tumor effects. Sesamol also inhibited lipopolysaccharide (LPS)-induced pulmonary inflammatory response in rats. However, it remains unclear how sesamol regulates airway inflammation and oxidative stress in asthmatic mice. This study aimed to investigate the efficacy of sesamol on oxidative stress and airway inflammation in asthmatic mice and tracheal epithelial cells. BALB/c mice were sensitized with ovalbumin, and received oral sesamol on days 14 to 27. Furthermore, BEAS-2B human bronchial epithelial cells were treated with sesamol to investigate inflammatory cytokine levels and oxidative responses in vitro. Our results demonstrated that oral sesamol administration significantly suppressed eosinophil infiltration in the lung, airway hyperresponsiveness, and T helper 2 cell-associated (Th2) cytokine expressions in bronchoalveolar lavage fluid and the lungs. Sesamol also significantly increased glutathione expression and reduced malondialdehyde levels in the lungs of asthmatic mice. We also found that sesamol significantly reduced proinflammatory cytokine levels and eotaxin in inflammatory BEAS-2B cells. Moreover, sesamol alleviated reactive oxygen species formation, and suppressed intercellular cell adhesion molecule-1 (ICAM-1) expression, which reduced monocyte cell adherence. We demonstrated that sesamol showed potential as a therapeutic agent for improving asthma.


2008 ◽  
Vol 86 (7) ◽  
pp. 449-457 ◽  
Author(s):  
Qiang Du ◽  
Zhen Chen ◽  
Lin-fu Zhou ◽  
Qian Zhang ◽  
Mao Huang ◽  
...  

Astragaloside IV, a new cycloartane-type triterpene glycoside extract of Astragalus membranaceus Bunge, has been identified for its potent immunoregulatory, antiinflammatory, and antifibrotic actions. Here we investigated whether astragaloside IV could suppress the progression of airway inflammation, airway hyperresponsiveness, and airway remodeling in a murine model of chronic asthma. BALB/c mice sensitized to ovalbumin (OVA) were chronically challenged with aerosolized OVA for 8 weeks. Astragaloside IV was orally administered at a dose of 50 mg·kg–1·day–1 during each OVA challenge. Astragaloside IV treatment resulted in significant reduction of eosinophilic airway inflammation, airway hyperresponsiveness, interleukin (IL)-4 and IL-13 levels in bronchoalveolar lavage fluid, and total immunoglobulin E levels in serum. Furthermore, astragaloside IV treatment markedly inhibited airway remodeling, including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. In addition, the expression of transforming growth factor-β1 in the lung was also reduced by astragaloside IV. These data indicate that astragaloside IV may mitigate the development of characteristic features in chronic experimental asthma.


2010 ◽  
Vol 162 (5) ◽  
pp. 998-1003 ◽  
Author(s):  
S. Addisu ◽  
T.H. El-Metwally ◽  
G. Davey ◽  
Y. Worku ◽  
M.A. Titheradge

Author(s):  
I. O. Marinkin ◽  
E. S. Lisova ◽  
V. V. Evchenko

The features of biomechanisms of endometrial hyperplasia in subjects exposed to reproductive toxicants were inflammation and oxidative stress. An association of Ki67 expression with 8-hydroxydeoxyguanosine, length of service, CD34 expression with 8-isoprostane and both Ki67 and CD34 expression with transforming growth factor B1 and lead exposure established.


2020 ◽  
Vol 21 (8) ◽  
pp. 626-632 ◽  
Author(s):  
Dawei Liu ◽  
Qinghua Wu ◽  
Hongyi Liu ◽  
Changhu Lu ◽  
Chao Gu ◽  
...  

Background: The red-crowned crane (Grus japonensis) is one of the most vulnerable bird species in the world. Mycotoxins are toxic secondary metabolites produced by fungi and considered naturally unavoidable contaminants in animal feed. Our recent survey indicated that the mycotoxins had the potential to contaminate redcrowned crane’s regular diets in China. Objective: This experiment was conducted to investigate the protective effects of mycotoxin binder montmorillonite (Mont) on growth performance, serum biochemistry and oxidative stress parameters of the red-crowned crane. Methods: 16 red-crowned cranes were divided into four groups and fed one of the following diets; a selected diet, regular diet, or the selected diet or regular diet with 0.5% montmorillonite added to the diets. The cranes' parameters of performance, hematology, serum biochemistry and serum oxidative stress were measured. Results: Consuming regular diets decreased the average daily feed intake (ADFI), levels of haemoglobin (Hb), platelet count (PLT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), but increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK) and lactate dehydrogenase (LDH). The supplementation of 0.5% Mont provided protection for the red-crowned crane in terms of feed intake, serum biochemistry and oxidative stress. Moreover, Mont supplementation had no adverse effect on the health of red-crowned crane. Conclusions: Taken together, these findings suggested that the addition of dietary Mont is effective in improving the health of red-crowned crane.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1311
Author(s):  
Shu-Ju Wu ◽  
Chian-Jiun Liou ◽  
Ya-Ling Chen ◽  
Shu-Chen Cheng ◽  
Wen-Chung Huang

Fucoxanthin is isolated from brown algae and was previously reported to have multiple pharmacological effects, including anti-tumor and anti-obesity effects in mice. Fucoxanthin also decreases the levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. The purpose of the present study was to investigate the effects of fucoxanthin on the oxidative and inflammatory responses in inflammatory human tracheal epithelial BEAS-2B cells and attenuated airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthmatic mice. Fucoxanthin significantly decreased monocyte cell adherence to BEAS-2B cells. In addition, fucoxanthin inhibited the production of pro-inflammatory cytokines, eotaxin, and reactive oxygen species in BEAS-2B cells. Ovalbumin (OVA)-sensitized mice were treated by intraperitoneal injections of fucoxanthin (10 mg/kg or 30 mg/kg), which significantly alleviated AHR, goblet cell hyperplasia and eosinophil infiltration in the lungs, and decreased Th2 cytokine production in the BALF. Furthermore, fucoxanthin significantly increased glutathione and superoxide dismutase levels and reduced malondialdehyde (MDA) levels in the lungs of asthmatic mice. These data demonstrate that fucoxanthin attenuates inflammation and oxidative stress in inflammatory tracheal epithelial cells and improves the pathological changes related to asthma in mice. Thus, fucoxanthin has therapeutic potential for improving asthma.


Sign in / Sign up

Export Citation Format

Share Document