Novel Simultaneous Identification of Capsaicin and It’s Quantification in Transferosome Formulation By HP-TLC Technique

2020 ◽  
Vol 17 (1) ◽  
pp. 172-183
Author(s):  
Nandanwadkar Shrikrishna Madhukar Hema ◽  
Mastiholimath Vinayak Shivamurthy ◽  
Pulija Karunakar

Introduction: Capsaicin (8-methy-N-vanillyl-6-nonenamide), a potential analgesic derived from Capsicum annuum (Chili peppers), widely used from ancient times for its pharmacological activities such as anti-inflammatory, anti-oxidant and analgesic and provides relief from migraine and diabetes. But for obvious reasons, capsaicin cannot be administered directly. The present work was designed with a focus to comply with mandatory requirement in various pharmacopeias to know the actual content of API present in final formulations. The formulation (TS3) consisting of 3% lipid, with 4:6 ratio of the polymer and solvent, was found to be the optimized formulation, which gave the best evaluation with regard to the particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies and highest drug entrapment efficiency (68.34±4.24)%. The prepared transferosome formulation was subjected to characterization by validated HP-TLC method consisting of N-Hexane: Tert- Iso-butyl-methyl ether in ratio (5:15) v/v. Linearity was performed in the range of 50-1500 ng/spot with LOD/LOQ 50 ng and 150 ng, with regression analysis (R) of 99.91%. Recovery analysis was performed at 3 different levels at 80, 100 and 120 with an average recovery of 106.97%, respectively. Till now, no analytical method has been reported, associated with the characterization of pharmaceutical nano-forms (Capsaicin), like transferosomes. Thus, the maiden validated HP-TLC method for concurrent analysis of capsaicin as API in nano-transferosome may be employed in process quality control of formulations containing the said API. Background: The irritability and adverse effects post application, leading to inflammation and neural pain at the site of administration of newly Capsaicin API and its chemical entities and marketed formulations are usually related to poor permeability, leading to drug complex reactions in the development phases or therapeutic failure along with the quantification of the same in blood plasma. However, advancement in drug formulations with the use of polymer: alcohol ratio and modernized analytical techniques for the quantification of Pharmaceutical APIs seems to be emerging and promising for overcoming pain and related inflammatory complications by formulating the APIs in Transferosome formulation with Validated HP-TLC technique being used as an effective economic and precise tool for quantitative analysis of APIs in their respective nano-forms. Objective: The study proposes a novel standardized method development and validation of pharmaceutical nanoforms with Capsaicin as API. Method: Capsaicin Transferosomes were formulated using Ultra probe sonication by utilizing different proportions of phospholipid 90G dissolved in a mixture of ethanol and propylene glycol. The formulation was subjected to Dynamic Light Scattering (DLS) technique for nano-particle analysis followed by characterization with respect to particle size, polydispersity index, zeta potential and entrapment efficiency. The morphological study of vesicles was determined using SEM and TEM. A Validated HP-TLC method for the identification and determination of Capsaicin in transferosomes formulation was performed as per the ICH guidelines. Results: The formulation gave the best evaluation for particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies (SEM & TEM) and highest drug entrapment efficiency (68.34±4.24)%. DSC thermograms and FTIR spectral patterns confirmed no physical interaction by polymers with API. The prepared formulation was then characterized using HP-TLC method. The best resolution was found in NHexane: Tert-Isobutyl methyl ether in a ratio of 5:15 v/v. The Rf was found to be 0.3±0.03. Linearity was performed in a range of 50-1500 ng/spot, with regression analysis (R) of 99.91% Further, recovery analysis was done at 3 different levels as 80, 100 and 120 with an average recovery of 106.97%. The LOD/LOQ was found to be 50 and 150 ng, respectively. Precision was carried out in which % RSD was found to be precise and accurate. Conclusion: The outcomes of the present study suggested that the proposed novel formulation analyzed by Validated planar chromatographic technique (HP-TLC) for Capsaicin quantification in nanoforms may be employed as a routine quality control method for the said API in various other formulations.

Author(s):  
Farshid A ◽  
Lakshmi Csr

  Objective: Triptans are effective medicines used to treat migraine and certain other headaches. This study has been conducted to prepared nanoparticles (NPs) of triptans by coacervation technique using a different drug to polymer ratios and evaluated.Methods: Polymers such as albumin and gelatin and cross-linking agent were used at different levels to prepare triptan NPs with high entrapment efficiency (EE) and low particle size (PS). Completion of the reaction was confirmed by infrared spectra. NPs were evaluated for shape and surface morphology, polydispersity index, zeta potential, EE, and PS distribution.Results: Among all the formulation, AA5 formulation of triptan-loaded albumin NPs (ANPs) has small PS and high EE.Conclusion: In this study, we have found that the ANPs in the presence of 4% glutaraldehyde as a cross-linking agent could be used as a delivery vehicle of triptans.


Author(s):  
RISA AHDYANI ◽  
LARAS NOVITASARI ◽  
RONNY MARTIEN

Objective: The objectives of this study were to formulate and characterize nanoparticles gel of timolol maleate (TM) by ionic gelation method using chitosan (CS) and sodium alginate (SA). Methods: Optimization was carried out by factorial design using Design Expert®10.0.1 software to obtain the concentration of CS, SA, and calcium chloride (CaCl2) to produce the optimum formula of TM nanoparticles. The optimum formula was characterized for particle size, polydispersity index, entrapment efficiency, Zeta potential, and molecular structure. Hydroxy Propyl Methyl Cellulose (HPMC) K15 was incorporated into optimum formula to form nanoparticles gel of TM and carried out in vivo release study using the Franz Diffusion Cell. Results: TM nanoparticles was successfully prepared with concentration of CS, SA, and CaCl2 of 0.01 % (w/v), 0.1 % (w/v), and 0.25 % (w/v), respectively. The particle size, polydispersity index, entrapment efficiency, and Zeta potential were found to be 200.47±4.20 nm, 0.27±0.0154, 35.23±4.55 %, and-5.68±1.80 mV, respectively. The result of FTIR spectra indicated TM-loaded in the nanoparticles system. In vitro release profile of TM-loaded nanoparticles gel showed controlled release and the Korsmeyer-Peppas model was found to be the best fit for drug release kinetics. Conclusion: TM-loaded CS/SA nanoparticles gel was successfully prepared and could be considered as a promising candidate for controlled TM delivery of infantile hemangioma treatment.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Seyed Sadegh Shahraeini ◽  
Jafar Akbari ◽  
Majid Saeedi ◽  
Katayoun Morteza-Semnani ◽  
Shidrokh Abootorabi ◽  
...  

Abstract In the current research, the main focus was to overcome dermal delivery problems of atorvastatin. To this end, atorvastatin solid lipid nanoparticles (ATR-SLNs) were prepared by ultra-sonication technique. The prepared SLNs had a PDI value of ≤ 0.5, and the particle size of nanoparticles was in the range 71.07 ± 1.72 to 202.07 ± 8.40 nm. It was noticed that, when the concentration of lipid in ATR-SLNs increased, the size of nanoparticles and drug entrapment efficiency were also increased. Results showed that a reduction in the HLB of surfactants used in the preparation of SLN caused an increase in the particle size, zeta potential (better stability), and drug entrapment efficiency. Despite Tween and Span are non-ionic surfactants, SLNs containing these surfactants showed a negative zeta potential, and the absolute zeta potential increased when the concentration of Span 80 was at maximum. DSC thermograms, FTIR spectra, and x-ray diffraction (PXRD) pattern showed good incorporation of ATR in the nanoparticles without any chemical interaction. In vitro skin permeation results showed that SLN containing atorvastatin was capable of enhancing the dermal delivery of atorvastatin where a higher concentration of atorvastatin can be detected in skin layers. This is a hopeful promise which could be developed for clinical studies of the dermal delivery of atorvastatin nanoparticles as an anti-inflammatory agent.


2018 ◽  
Vol 8 (6) ◽  
pp. 82-86 ◽  
Author(s):  
Surendranath Betala ◽  
M Mohan Varma ◽  
K Abbulu

The aim of present study was to formulate and evaluate nanoparticles of carvedilol by using different hydrophilic polymers. Carvedilol was selected as a suitable drug for gastro- retentive nanoparticles due to its short half life, low bioavailability, high frequency of administration, and narrow absorption window in stomach and upper part of GIT. The nano-precipitation method was used to prepare nanoparticles so as to avoid both chlorinated solvents and surfactants to prevent their toxic effect on the body. Nanoparticles of  carvedilol were prepared by using hydrophilic polymers such as HPMC K100M, chitosan, and gelatin. The prepared formulations were then characterized for particle size, polydispersity index, zeta potential, loading efficiency, encapsulation efficiency and drug-excipient compatibility. The prepared nanoparticulate formulations of carvedilol  with different polymers in 1:1 ratio have shown particle size in the range of 250.12-743.07 nm, polydispersity index (PDI) in the range of 0.681-1.0, zeta potential in the range of -14.2 to +33.2 mV, loading efficiency in the range of 8.74-17.54%, and entrapment efficiency in the range of 55.7%-74.2%. Nanoparticulate formulation prepared with chitosan in 1:1 ratio showed satisfactory results i.e. average particle size 312.04 nm, polydispersity index 0.681, zeta potential 33.2 mV, loading efficiency 17.54%, and entrapment efficiency 73.4%. FTIR study concluded that no major interaction occurred between  the drug and polymers used in the present study. Keywords: Nanoparticles; gastro-retentive; nano-precipitation, polydispersity index, zeta potential; entrapment efficiency.


Author(s):  
Ankit Anand Kharia ◽  
A K Singhai ◽  
R Verma

The aim of present study was to formulate and evaluate nanoparticles of acyclovir by using different hydrophilic polymers. Acyclovir was selected as a suitable drug for gastro-retentive nanoparticles due to its short half life, low bioavailability, high frequency of administration, and narrow absorption window in stomach and upper part of GIT. The nano-precipitation method was used to prepare nanoparticles so as to avoid both chlorinated solvents and surfactants to prevent their toxic effect on the body. Nanoparticles of acyclovir were prepared by using hydrophilic polymers such as bovine serum albumin, chitosan, and gelatin. The prepared formulations were then characterized for particle size, polydispersity index, zeta potential, loading efficiency, encapsulation efficiency and drug-excipient compatibility. The prepared nanoparticulate formulations of acyclovir with different polymers in 1:1 ratio have shown particle size in the range of 250.12-743.07 nm, polydispersity index (PDI) in the range of 0.681-1.0, zeta potential in the range of -14.2 to +33.2 mV, loading efficiency in the range of 8.74-17.54%, and entrapment efficiency in the range of 55.7%-74.2%. Nanoparticulate formulation prepared with chitosan in 1:1 ratio showed satisfactory results i.e. average particle size 312.04 nm, polydispersity index 0.681, zeta potential 33.2 mV, loading efficiency 17.54%, and entrapment efficiency 73.4%. FTIR study concluded that no major interaction occurred between the drug and polymers used in the present study.  


Author(s):  
Kavee Srichaivatana ◽  
Anan Ounaroon ◽  
Waree Tiyaboonchai

Objective: To develop and characterize Piper retrofractum extract loaded nanostructured lipid carriers (PRE loaded NLCs) for topical oral cavity administration to enhance bioavailability and stability of piperine.Methods: PRE loaded NLCs were prepared with a hot high-pressure homogenization technique followed by coating the particle surface with mucoadhesive polymers; polyethene glycol 400 (PEG) and polyvinyl alcohol (PVA). The physicochemical properties in terms of particle size, polydispersity index, zeta potential, drug entrapment efficiency, in vitro drug release profile and antimicrobial activities were examined. In vitro, mucoadhesion studies were assessed by the wash-off test. The physicochemical stabilities of mouth spray containing PRE loaded NLCs were investigated by kept at room temperature and 4 °C for 6 mo.Results: The PRE loaded NLCs showed spherical shape with a mean particle size of ~100-120 nm and zeta potential of ~-24 mV. Up to 90% drug entrapment efficiency was achieved. PEG-NLCs and PVA-NLCs showed a strong interaction with porcine buccal mucosa than uncoated-NLCs. All PRE loaded NLCs formulations revealed fast release characteristics and effective against Streptococcus mutans and S. sanguinis. The mouth spray containing PRE loaded NLCs showed good physical stability without particle aggregation. In addition, the chemical stability of piperine in NLCs was significantly improved during storage at both storage conditions compared to its solution form.Conclusion: The developed PRE loaded polymer coated-NLCs showed high potential to use as a local drug delivery system for reducing the bacterial growth in the oral cavity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wasim Akram ◽  
Navneet Garud

Abstract Background The overall objective was to prepare a highly accurate nanocarrier system of mesalamine for the treatment of ulcerative colitis with increased therapeutic efficacy and targeting. In the formulation of nanocarrier systems, optimization is a critical process for understanding nanoformulation variables and quality aspects. The goal of the present work was to determine the effect of independent variables, i.e., the concentrations of chitosan, carboxymethyl inulin (CMI), and the drug on the response variables, i.e., particle size and percent entrapment efficiency of the mesalamine-loaded nanoparticle using the Box Behnken design (BBD). The correlation between the independent and dependent variables was investigated using the Design Expert generated mathematical equations, contour, and response surface designs. Result An optimized batch was developed using the ionotropic gel method with selected independent variables (A: + 1 level, B: 0 level, C: − 1 level) and the developed nanoparticles had a particle size of 184.18 nm, zeta potential 26.54 mV, and entrapment efficiency 88.58%. The observed responses were remarkably similar to the predicted values. The morphological studies revealed that the formulated nanoparticles were spherical, and the results of the FTIR and DSC studies indicated the drug-polymer compatibility. The nanoparticle showed less than 5% release in the pH 1.2. In the colonic region (pH 7.4), more than 80 % of the medication was released after 24 h. The kinetics study showed that the Higuchi and Korsemeyer-Peppas models had R2 values of 0.9426 and 0.9784 respectively, for the developed formulation indicating linearity, as revealed by the plots. This result justified the sustained release behavior of the formulation. Conclusion The mesalamine-loaded chitosan-CMI nanoparticle has been successfully developed using the ionotropic gelation method. The nanoparticles developed in this study were proposed to deliver the drug to its desired site. The developed nanoparticles were likely to have a small particle size with positive zeta potential and high percent drug entrapment. It could be stated from the results that BBD can be an active way for optimizing the formulation and that nanoparticles can be a potential carrier for delivering therapeutics to the colon.


2020 ◽  
Vol 10 (3) ◽  
pp. 408-417
Author(s):  
Jyotsana R. Madan ◽  
Izharahemad N. Ansari ◽  
Kamal Dua ◽  
Rajendra Awasthi

Purpose : The objective of this work was to formulate casein (CAS) nanocarriers for the dissolution enhancement of poorly water soluble drug celecoxib (CLXB). Methods: The CLXB loaded CAS nanocarriers viz., nanoparticles, reassembled CAS micelles and nanocapsules were prepared using sodium caseinate (SOD-CAS) as a carrier to enhance the solubility of CLXB. The prepared formulations were characterized for particle size, polydispersity index, zeta potential, percentage entrapment efficiency, and surface morphology for the selection of best formulation. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray powder diffraction study was used to for the confirmation of encapsulation of CLXB. Further, in vitro drug dissolution, ex-vivo permeation studies on chicken ileum and stability studies were carried out. Results: The CLXB loaded casein nanoparticles (CNP) (batch A2) showed a particle size diameter 216.1 nm, polydispersity index 0.422 with percentage entrapment efficiency of 90.71% and zeta potential of -24.6 mV. Scanning electron microscopy of suspension confirmed globular shape of CNP. The in vitro release data of optimized batch followed non Fickian diffusion mechanism. The ex vivo permeation studies on chicken ileum of CLXB loaded CNP showed permeation through mucous membrane as compared to pure CLXB. The apparent permeability of best selected freeze dried CLXB loaded CNP (batch A2) was higher and gradually increased from 0.90 mg/cm2 after 10 min to a maximum of 1.95 mg/cm2 over the subsequent 90 min. A higher permeation was recorded at each time point than that of the pure CLXB. Conclusion: The study explored the potential of CAS as a carrier for solubility enhancement of poorly water soluble drugs.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1485
Author(s):  
Yogeeta O. Agrawal ◽  
Umesh B. Mahajan ◽  
Vinit V. Agnihotri ◽  
Mayur S. Nilange ◽  
Hitendra S. Mahajan ◽  
...  

Ezetimibe (EZE) possesses low aqueous solubility and poor bioavailability and in addition, its extensive hepatic metabolism supports the notion of developing a novel carrier system for EZE. Ezetimibe was encapsulated into nanostructured lipid carriers (EZE-NLCs) via a high pressure homogenization technique (HPH). A three factor, two level (23) full factorial design was employed to study the effect of amount of poloxamer 188 (X1), pressure of HPH (X2) and number of HPH cycle (X3) on dependent variables. Particle size, polydispersity index (PDI), % entrapment efficiency (%EE), zeta potential, drug content and in-vitro drug release were evaluated. The optimized formulation displays pragmatic inferences associated with particle size of 134.5 nm; polydispersity index (PDI) of 0.244 ± 0.03; zeta potential of −28.1 ± 0.3 mV; % EE of 91.32 ± 1.8% and % CDR at 24-h of 97.11%. No interaction was observed after X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies. EZE-NLCs (6 mg/kg/day p.o.) were evaluated in the high fat diet fed rats induced hyperlipidemia in comparison with EZE (10 mg/kg/day p.o.). Triglyceride, HDL-c, LDL-c and cholesterol were significantly normalized and histopathological evaluation showed normal structure and architecture of the hepatocytes. The results demonstrated the superiority of EZE-NLCs in regard to bioavailability enhancement, dose reduction and dose-dependent side effects.


Author(s):  
Harjeet Singh ◽  
Ram Dayal Gupta ◽  
Girendra Gautam

Objective: The aim of this study was to formulate and optimize solid lipid nanoparticles (SLNs) for the enhancement of solubility and bioavailability of the poorly aqueous soluble drug rosuvastatin calcium.Methods: SLNs were prepared by slight modification of solvent emulsification-diffusion technique and analyzed for particle size, zeta potential, drug entrapment efficiency, in vitro drug release, stability, and pharmacokinetic studies. Rosuvastatin calcium SLNs were formulated using stearic acid as main lipid, poloxamer 407 as surfactant, and Tween 80 as cosurfactant.Results: All parameters were found to be in an acceptable range. Optimized formulation OR2 SLNs have shown mean particle size 115.49±2.97 nm with polydispersity index value of 0.456, zeta potential - 18.40 mV, 60.34% drug loading, and 97.16% drug entrapment efficiency. In vitro drug release was found to be 88.70±3.59% after 12 h with sustained release and was fitted with Higuchi model with a very high correlation coefficient (R2=0.9905). Transmission electron microscopy confirms that the SLNs of selected optimized formulation are circular in shape. Differential scanning calorimetry and X-ray diffraction confirm the formation of amorphous product. 1H nuclear magnetic resonance studies confirm the intermolecular hydrogen bonding between drug and lipid. Pharmacokinetic studies showed an optimized formulation OR2 SLNs enhanced bioavailability with 4.44-fold as compare to plain drug suspension. Optimized formulation OR2 SLNs have shown good stability at 25±2°C and 60±5°C relative humidity for 180 days.Conclusion: Thus, the current study can be useful for the successful development of optimized SLNs and able to enhance the bioavailability of poorly soluble drug rosuvastatin calcium.


Sign in / Sign up

Export Citation Format

Share Document