scholarly journals STUDY OF ISOTONICITY AND OCULAR IRRITATION OF CHLORAMPHENICOL IN SITU GEL

Author(s):  
INSAN SUNAN KURNIAWANSYAH ◽  
TAOFIK RUSDIANA ◽  
ZAHRA DZAKIRAH ABNAZ ◽  
IYAN SOPYAN ◽  
ANAS SUBARNAS

Objective: The objective of this study was to find out the isotonicity of chloramphenicol ophthalmic in situ gel and to know the irritating effect of its in the eyes of test animals, so it can be to maximize absorption of the drug in the eye, minimize drug loss before corneal penetration and safe to used. Methods: This study were started by making four aseptic formulations of in situ gel preparations with a comparison of the baseline concentrations of different Poloxamer 407 and HPMC, F1 (5: 0.45), F2 (10: 0.45), F3 (5: 1) and F4 (10: 1). Four aseptic of in situ gel preparations, followed by a qualitative isotonicity test using blood cells to see the comparison between control and test preparations, and ocular irritation test using the draize test method to determine the presence or absence of the irritation. Results: The results obtained from the isotonicity test showed that the four preparations have normal blood cells that similar with isotonic control solution; therefore, it can be said that the preparations have been made isotonic. The results of the ocular irritation test using the draize test method showed for each category, such as cornea, iris, conjunctiva and edema were zero. A zero value on the cornea indicates no ulceration or opacity, and the iris, conjunctiva and edema were normal. Conclusion: Chloramphenicol in situ gel are isotonic and do not cause irritation to the rabbit's eyes, so they are safe to use and the formulation can be used for further research until the final goal is obtained.

2018 ◽  
Vol 10 (6) ◽  
pp. 34 ◽  
Author(s):  
Insan Sunan Kurniawansyah ◽  
Iyan Sopyan ◽  
Nasrul Wathoni ◽  
Dasty Latifa Fillah ◽  
Rahadianti Umi Praditya

Applications of in situ gel have been used for a variety of drug delivery routes, such as oral, ocular, rectal, vaginal and injection. Characterization of in situ gel was determined to ensure that the prepared preparation met the standard and it safe. This review describes every aspects of this novel application and characterization of in situ gel preparations, which present the readers an exhaustive detail and might contribute to research and development. In the chemical evaluation in situ gel determined the diffusion of the active substance of a compound by measuring its concentration. In physical evaluation of isotonic calculated by osmotic pressure, drug release was determined by melting point of the substance polymer, gel strength as measured by rheometer, homogenecity test determined by under the light, and stability test with environmental conditions setting. In microbiology evaluation determine if the preparations was contaminated or not, also be effective and safe. Ocular irritation studies-Draize Test us an animal mice or rabbit and determination of visual appearance, clarity, and pH is required. In situ gels offer the primary requirement of a successful controlled release product that is increasing patient compliance.


2019 ◽  
Vol 9 (01) ◽  
pp. 76-82 ◽  
Author(s):  
Insan Sunan Kurniawansyah ◽  
Norisca Aliza Putriana ◽  
Agung Fitri Kusuma ◽  
Tan Mei Lee

Introduction: In-situ gel is a simple liquid transparent polymer solution under storage conditions, but turns into a viscoelastic gel after entering the eye due to the phase transition properties of the polymer that increase the residence time in ocular organ and bioavailability, enabling the delivery of reproducible doses and improving patient compliance. The aim of the present study was to formulate and evaluate the antibacterial effectivity of chloramphenicol in-situ ophthalmic gel with base poloxamer 407 and HPMC base against Staphylococcus aureus and Pseudomonas aeruginosa. Material and Methods: The optimization of ophthalmic gel preparation by the factorial design method has been carried out in order to know the best formula of all the formulas employed with 0.5% chloramphenicol active substance, wherein each formula was obtained from high concentration and low concentration of each base. Results: The measurement of the antibacterial effectivity against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 by oneway ANOVA analysis showed that formula with base poloxamer 407 5% (F1) gave the best result. F1 has a dilute consistency, clear and stable during 28 days storage time when effectiveness test performed. Conclusions: Chloramphenicol in-situ gel with base poloxamer 407 and HPMC were effective against Staphylococcus aureus ATCC 29213 with intermediate to sensitive category, and Pseudomonas aeruginosa ATCC 27853 with sensitive category in accordance to the requirements of the Clinical and Laboratory Standards Institute (CLSI).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 360
Author(s):  
Lubna M. Eldesouky ◽  
Riham M. El-Moslemany ◽  
Alyaa A. Ramadan ◽  
Mahmoud H. Morsi ◽  
Nawal M. Khalafallah

An ophthalmic cyclosporine (CsA) formulation based on Lipid nanocapsules (LNC) was developed for dry eye management, aiming to provide targeting to ocular tissues with long-term drug levels and maximum tolerability. CsA-LNC were of small particle size (41.9 ± 4.0 nm), narrow size distribution (PdI ≤ 0.1), and high entrapment efficiency (above 98%). Chitosan (C) was added to impart positive charge. CsA-LNC were prepared as in-situ gels using poloxamer 407 (P). Ex vivo mucoadhesive strength was evaluated using bovine cornea, while in vivo corneal biodistribution (using fluorescent DiI), efficacy in dry eye using Schirmer tear test (STT), and ocular irritation using Draize test were studied in rabbits compared to marketed ophthalmic CsA nanoemulsion (CsA-NE) and CsA in castor oil. LNC incorporation in in-situ gels resulted in an increase in mucoadhesion, and stronger fluorescence in corneal layers seen by confocal microscopy, compared to the other tested formulations. Rate of recovery (days required to restore corneal baseline hydration level) assessed over 10 days, showed that CsA-LNC formulations produced complete recovery by day 7 comparable to CsA-NE. No Ocular irritation was observed by visual and histopathological examination. Based on data generated, CsA-LNC-CP in-situ gel proved to be a promising effective nonirritant CsA ophthalmic formulation for dry eye management.


Author(s):  
Hussein K. Alkufi ◽  
Hanan J. Kassab

     Objective: The purpose of this study to develop and optimize nasal mucoadhesive in situ gel IG of sumatriptan ST (serotonin agonist) to enhance nasal residence time for migraine management.      Method: Cold method was used to prepare ST nasal in-situ gel, using thermosensitive polymers (poloxamer 407  and/or poloxamer 188) with a mucoadhesive polymer (hyaluronic acid HA) which were examined for gelation temperature and gelation time, pH, drug content, gel strength, spreadability, mucoadhesive force determination, viscosity,  in-vitro drug release, and the selected formula was subjected to ex-vivo permeation study and histological evaluation of the sheep mucosal tissue after application.     Results: The results showed that the formula IG7 prepared from poloxamer 407(19%), poloxamer188 (4%) and HA (0.5%)   had an optimum gelation temperature (32.66±1.52°C), gel  strength (43.66± 1.52 sec),  mucoadhesive force (8067.93± 746.45dyne\cm2), in-vitro drug release (95.98%) over 6hr, ex-vivo permeation study release (89.6%)  during the 6 h. study with no  histological or pathological change in the nasal sheep tissue.     Conclusion: The ease of administration via a nasal drop of ST coupled with less frequent administration and prolong drug release, will enhance patient compliance.


2014 ◽  
Vol 1060 ◽  
pp. 66-69
Author(s):  
Suwannee Panomsuk ◽  
Pimchanok Nakprasong ◽  
Suthi On Tanpichai ◽  
Sasithorn Chin-Aramrungruang

In situ gel, a new concept of medical product for oral applications was developed using Poloxamer 407 (P) and Carbopol 934 (C) which are thermo-and pH-sensitive sol-gel polymers, respectively. The formulations were evaluated for the physical appearance, pH, viscosity, sol-gel temperature, gel strength and buccal mucoadhesive (adhesion to porcine buccal mucosa). Benzalkonium chloride (BzCl) 0.1% w/v was added in the suitable formulations as a model drug. Formulations containing 20% P (pH = 7.1) and 20% P + 0.6% C (pH = 5.0) showed good physical appearances which turned to gels in buccal conditions. Their mucoadhesive force to porcine buccal mucosa were higher than formulations containing 10 and 15 % P(p<0.05). The present of 0.6 % C in the formulation did not affect gel strength but tended to increase mucoadhesive properties. The release of BzCl from the formulations was performed using Franz diffusion cell at 37°C for 1 hour. There were no different in drug release from both formulations(p<0.05), the amount of drug release was 11.7% ± 4.4 and 10.9% ± 0.8, respectively. In conclusion, formulation containing 20% P and 0.6% C has revealed the most suitable properties as in situ gel for buccal mucosa applications, the release of BzCl was 10.9% ± 0.8 within 1 hour.


Author(s):  
DIKSHA SHARMA ◽  
SHAWETA AGARAWAL

Objective: The objective of the study was to aiming to formulate and evaluate temperature based in situ nasal gel of sertraline HCL. Materials and Methods: Preformulation studies of sertraline hydrochloride including tests for identification, solubility studies, Fourier-transformer infrared (FTIR) spectroscopy, melting point determination, and other studies were carried out and compared with the specification as per literature. The solubility of sertraline hydrochloride was determined in different solvents such as in distilled water, ethanol, acetone, isopropyl alcohol, and 2-propanol. Each value for solubility was determined in triplicate and average values were reported. The drug excipient compatibility study was determined by FTIR. Thermal analysis was performed using a differential scanning calorimetric equipped with a computerized data station. The UV spectrum of sertraline hydrochloride was obtained using UV JascV630. The in situ gel formulation was prepared by changing the concentration and using only one polymer (Carbopol 934) has been used at the same concentration. Mucoadhesive strength and in vitro permeation study were determined using gout nasal mucosal membrane, whereas in vitro drug release study was carried out using diffusion cell through egg membrane as a biological membrane. The stability studies were conducted according to ICH guidelines. Results: The FTIR studies of formulation show no interaction between drug and excipient. In situ gel was prepared using Carbopol 934 and Poloxamer 407 to improve its adhesion property. The optimized formulation (F6) was transparent and clear in appearance with 101.15% drug content. The sol-gel transformation of in situ gel was found at temperature 34.92°C with immediate gelation property. The in vitro drug release of optimized formulation was found 95.80% drug release in 8 h. Formulations F4 and F6 showed immediate gelation within 60 s and remained stable for an extended period. All the formulations were liquid at room temperature and underwent rapid gelation on contact with simulated nasal fluid. Conclusion: The results concluded that the formulations of in situ nasal gel showing to improve the bioavailability through its longer residence time and ability to sustain drug release.


2018 ◽  
Vol 10 (4) ◽  
pp. 153 ◽  
Author(s):  
Fadia Yassir Al-bazzaz ◽  
Myasar Al-kotaji

Objective: This work aims to formulate and evaluate an ophthalmic in-situ gel of ciprofloxacin hydrochloride (HCl) using poloxamer 407 (P407) as a gelling agent and hydroxypropyl methylcellulose (HPMC) as a viscosity modifier. The objective of this work was to prolong the contact time as the in-situ gel will be converted into a gel upon contact with the cul-de-sac. Methods: Ciprofloxacin HCl ophthalmic in-situ gel was prepared by utilizing (P407) as a temperature-dependent polymer while hydroxypropyl methylcellulose was used as a viscosity modifier. The system was evaluated for physical appearance, pH, drug content, sterility, irritancy and stability. In addition, gelation temperature and a viscosity at different shear rates and different temperatures were studied. The compatibility of the polymer with ciprofloxacin was studied by using fourier transform infrared spectroscopy (FTIR). The in vitro release of the drug was also evaluated and supported by a preliminary in vivo test.Results: The results showed that the prepared formulas were clear, with acceptable pH and the drug contents were within the acceptable limits. FTIR results detected no incompatibility between poloxamer 407 and ciprofloxacin HCl. Notably, the viscosity of the system showed a pseudoplastic behaviour where a reduction in viscosity upon increasing the shear rate was observed. The in vitro release study confirmed the prolongation of the release of the optimized formula (F6) up to 8 h. Upon application of F6 into eyes of rabbits there was no irritancy. In addition, in vivo elimination study showed a prolonged contact for the in-situ gel in comparison with the rapid clearance of eye drop. Stability study indicated the stability of the optimized formula (F6). Conclusion: The prepared optimized formula (F6) represents a successful, safe, stable and prolonged release in-situ gel formula of ciprofloxacin.


Author(s):  
INSAN SUNAN KURNIAWANSYAH ◽  
TAOFIK RUSDIANA ◽  
HURIYATUS TSANIYAH ◽  
HANDRIAN RAMOKO ◽  
HABIBAH A. WAHAB ◽  
...  

Objective: The objective of this study was to find the best base mixture composition (poloxamer 407 and HPMC) of chloramphenicol in situ gel formula based on in vitro property (Cumulative amount of drug release). Methods: The in vitro diffusion of chloramphenicol in situ gel study was carried out using franz diffusion cells to know the effect of the Critical Process Parameters (CPPs) as independent variables (poloxamer 407 and hydroxypropyl methylcellulose (HPMC)) on the Critical Quality Attribute (CQA) as dependent variable (cumulative amount of drug release) with 22 factorial design. Results: 22 factorial design of chloramphenicol in situ gel yielded 4 variations of poloxamer 407 and HPMC bases component in %w/v as follows, F1 (5:0.45), F2 (10:0.45) F3 (5:1) and F4 (10:1). The amount of drug release results from in vitro dissolution assay were 30.60% (F1), 45.64% (F2), 58.30% (F3), and 22.50%) (F4). Conclusion: Formula 3 (F3) was considered as the best formula component in terms of in vitro assay of chloramphenicol in situ gel with a desirability value of 0.58.


2020 ◽  
Vol 11 (4) ◽  
pp. 231-243
Author(s):  
Kenchappa Vanaja ◽  
Marzieh Zare ◽  
Brinda Basavaraju ◽  
S Salwa ◽  
Sathyanarayana Narasimha Murthy ◽  
...  

Aim: A novel thermosensitive in situ gel loaded with meropenem (MP) liposomes was designed to improve retention in the oral cavity as a prophylactic measure to prevent ventilator-acquired pneumonia in critically ill patients. Methodology & results: Meropenem liposomes were incorporated into poloxamer 407 gels and gamma irradiated. Mean size of liposome was 247 nm, polydispersity index < 0.3 and zeta potential >-25 mV; properties remained unaltered even post sterilization. Permeation study revealed that 75.26% and 34% of MPs were released from MP in situ gel and MP in situ liposomal gel, respectively. The relation between viscosity (cp) and shear rate (1/s) indicate that in situ gels exhibited non-Newtonian behavior at 37°C. The study using Pseudomonas aeruginosa confirmed the antimicrobial activity of meropenem. Conclusion: Prolonged in situ residence, because of rapid gelation process enables an easy administration of meropenem as liposomal suspension in critically ill patients.


2019 ◽  
Vol 18 (2) ◽  
pp. 183-193 ◽  
Author(s):  
PK Lakshmi ◽  
K Harini

The present investigation was aimed to develop a thermo-reversible nasal in situ gel of atomoxetine hydrochloride (AH) with reduced nasal muco-ciliary clearance in order to improve residence time and targeting the brain through nasal mucosa for the treatment of attention-deficit hyperactivity disorder (ADHD). In situ gel formulations were prepared using different concentrations of the thermo-gelling poloxamer 407 and mucoadhesive polymers. Temperature-triggered ionic gelation is the mechanism involved. Taguchi L9 OA experimental design was employed for the optimization of the effect of independent variables (Poloxamer 407 and Carbopol 934P) on the response (gelation temperature). In situ gel formulation F4 having 20% poloxamer 407 and 0.3% carbopol 934P and formulation F6 having 20% poloxamer 407 and 0.2% HPMC K100 were optimized based on evaluation parameters. The gelation temperature of F4 and F6 was found to be 37°C ± 0.4 and 37°C ± 0.2, drug content 98.34 and 98.33% and drug release was 83.18, 82.4% in 4 hrs with a flux of 436.9 and 428.1 μg.cm2/hr, respectively. The release pattern of drug followed first-order kinetics with Higuchi release mechanism. The value of ‘n’ from Korsemeyer equation indicated the anomalous diffusional drug release. This study concluded that in situ gel enhanced the nasal residence time and thus may improve the bioavailability of the drug through nasal route by avoiding first pass metabolism Dhaka Univ. J. Pharm. Sci. 18(2): 183-193, 2019 (December)


Sign in / Sign up

Export Citation Format

Share Document