scholarly journals FABRICATION AND CHARACTERIZATION OF RALOXIFENE LOADED SOLID-LIPID NANOPARTICLES

Author(s):  
NAVIN CHANDRA PANT ◽  
VIJAY JUYAL

Objective:  The poor water solubility of the drug presents a great challenge for the formulation development and results in low oral bioavailability. The oral bioavailability of Raloxifene HCl (RLX) is very low (<2%) in humans due to its poor solubility. The objective of the present study was to develop RLX loaded solid-liquid nanoparticles for effective drug delivery. Methods: Compritol 888 ATO-based RLX-loaded solid lipid nanoparticles (SLNs) were formulated using the oil in water microemulsion method. Drug-excipients compatibility was confirmed through Fourier transform infrared spectroscopy, Differential scanning calorimetry methods. The SLN was characterized for particle size, surface morphology, entrapment efficiency. Results: A total of seventeen formulations (SLN1-SLN17) were developed as per the 3 levels 3 factor Box–Behnken design. The model used for the analysis was statistically analyzed using ANOVA and the goodness of fit was evaluated using diagnostic plots. As per the response-surface plots, the amount of lipid, poloxamer 407, and ultrasonication time have a significant effect on the particle size and entrapment efficiency (%EE). The developed RLX-loaded SLNs have the size and %EE in the range of 165.63±2.62 nm to 315.33±4.87 nm and 75.21±2.32% to 95.32±2.11%. The TEM analysis showed that the developed RLX-loaded SLNs were almost spherical and has a small size range. Conclusion: The high biocompatibility, biodegradability, ability to protect drugs in GIT, and sustained release properties make SLNs an ideal candidate to resolve poor oral bioavailability challenges.

2019 ◽  
Vol 7 (5) ◽  
pp. 375-388 ◽  
Author(s):  
Vaishali M. Gambhire ◽  
Makarand S. Gambhire ◽  
Nisharani S. Ranpise

Background: Dronedarone HCl (DRD), owing to its poor aqueous solubility and extensive presystemic metabolism shows low oral bioavailability of about 4% without food, which increases to approximately 15% when administered with a high fat meal. Objective: Solid lipid nanoparticles (SLN) were designed with glyceryl monstearate (GMS) in order to improve oral bioavailability of DRD. Methods: Hot homogenization followed by probe sonication was used to prepare SLN dispersions. Box-Behnken design was used to optimize manufacturing conditions. SLN were characterized for particle size, zeta potential, entrapment efficiency, physical state and in vitro drug release. Pharmacokinetics and intestinal uptake study of dronedarone HCl loaded solid lipid nanoparticles (DRD-SLN) in the presence and absence of endocytic uptake inhibitor, chlorpromazine (CPZ) was performed with conscious male Wistar rats. Results: Optimized formulation of SLN showed particle size of 233 ± 42 nm and entrapment efficiency of 87.4 ± 1.29%. Results of pharmacokinetic studies revealed enhancement of bioavailability of DRD by 2.68 folds from SLN as compared to DRD suspension. Significantly reduced bioavailability of DRD-SLNs in the presence of chlorpromazine, demonstrated the role of endocytosis in uptake of SLN formulation. Conclusion: These results indicated that dronedarone HCl loaded SLN could potentially be exploited as a delivery system for improving oral bioavailability by minimizing first pass metabolism.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2020 ◽  
Vol 10 (4) ◽  
pp. 404-418
Author(s):  
Kruti Borderwala ◽  
Ganesh Swain ◽  
Namrata Mange ◽  
Jaimini Gandhi ◽  
Manisha Lalan ◽  
...  

Background: The objective of this study was to develop solid lipid nanoparticles (SLNs) of poorly water soluble anti-hyperlipidemic drugs-Ezetimibe in combination with Simvastatin. Methods: This study describes a 32 full factorial experimental design to optimize the formulation of drug loaded lipid nanoparticles (SLN) by the high speed homogenization technique. The independent variables amount of lipid (GMS) and amount of surfactant (Poloxamer 188) were studied at three levels and arranged in a 32 factorial design to study the influence on the response variables- particle size, % entrapment efficiency (%EE) and cumulative drug release (% CDR) at 24 h. Results: The particle size, % EE and % CDR at 24 h for the 9 batches (B1 to B9) showed a wide variation of 104.6-496.6 nm, 47.80-82.05% (Simvastatin); 48.60-84.23% (Ezetimibe) and 54.64-92.27% (Simvastatin); 43.8-97.1% (Ezetimibe), respectively. The responses of the design were analysed using Design Expert 10.0.2. (Stat-Ease, Inc, USA), and the analytical tools of software were used to draw response surface plots. From the statistical analysis of data, polynomial equations were generated. Optimized formulation showed particle size of 169.5 nm, % EE of 75.43% (Simvastatin); 79.10% (Ezetimibe) and 74.13% (Simvastatin); 77.11% (Ezetimibe) %CDR after 24 h. Thermal analysis of prepared solid lipid nanoparticles gave indication of solubilisation of drugs within lipid matrix. Conclusion: Fourier Transformation Infrared Spectroscopy (FTIR) showed the absence of new bands for loaded solid lipid nanoparticles indicating no interaction between drugs and lipid matrix and being only dissolved in it. Electron microscope of transmission techniques indicated sphere form of prepared solid lipid nanoparticles with smooth surface with size approximately around 100 nm.


2020 ◽  
Vol 19 (5) ◽  
pp. 909-918
Author(s):  
Saqer Alarifi ◽  
Salam Massadeh ◽  
Mohammed Al-Agamy ◽  
Manal A.l. Aamery ◽  
Abdulkareem Al Bekairy ◽  
...  

Purpose: To incorporate ciprofloxacin (CIP) into solid lipid nanoparticles (SLN) in order to enhance its biopharmaceutical properties and antibacterial activity.Methods: A sonication melt-emulsification method was employed for the preparation of CIP-loaded SLN. The composition of the SLN was varied in order to investigate factors such as lipid type and combination ratio, drug to lipid ratio, and surfactant ratio. The produced SLN formulations wereevaluated for their particle size and shape, zeta potential, and entrapment efficiency. In addition, the effect of SLN formulation composition on its drug release profile and antimicrobial activity against Escherichia coli, Pseudomonas Aeruginosa, and Staphylococcus Aureus was also investigated.Results: The generated nanoparticles had particle size in the range of 165 to 320 nm. The zetapotential values were generally low within ± 5. All formulations exhibited entrapment efficiency between 50 and 90 %. CIP release exhibited a biphasic release profile with a low burst phase, followed by uniform controlled-release behavior of various rates. SLN-loaded CIP exhibited one-fold reduction in minimum inhibitory concentration (MIC) and caused significant inhibition of all the three bacterial strains tested, when compared with pure CIP.Conclusion: Loading of CIP into SLN significantly enhances its antimicrobial activity in vitro which can translate to significant enhancement of therapeutic outcomes by minimizing the dose-dependent adverse and side effects and/or enhancing the antimicrobial spectrum of activity. Keywords: Solid lipid nanoparticles, Sonication melt-emulsification, Ciprofloxacin, Escherichia coli, Pseudomonas aeruginosa


Author(s):  
Kumara Swamy S ◽  
Ramesh Alli

The purpose of this study was to develop and evaluate irbesartan (IS) loaded solid lipid nanoparticles (SLNs; IS-SLNs) that might enhance the oral bioavailability of IS. IS, an angiotensin-receptor antagonist, used to treat hypertension. However, poor aqueous solubility and poor oral bioavailability has limited therapeutic applications of IS. Components of the SLNs include either of trimyristin/tripalmitin/tristearin/trilaurate/stearic acid/beeswax, and surfactants (Poloxamer 188 and soylecithin). The IS-SLNs were prepared by hot homogenization followed by ultrasonication method and evaluated for particle size, poly dispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), drug content and in vitro drug release. The physical stability of optimized formulation was studied at refrigerated and room temperature for two months. The optimized IS-SLN formulation (F4) had a mean diameter of about 217.6±3.62 nm, PDI of 0.163±0.032, ZP of -28.5±4.12, assay of 99.8±0.51 and EE of 93.68±2.47%. The formulation showed sustained drug release compared with control formulation over 24 h. Optimized formulation was found to be stable over two months. IS-SLN showed nearly spherical in shape using and converted to amorphous form by DSC. Thus, the results conclusively demonstrated SLNs could be considered as an alternative delivery system for the oral bioavailability enhancement of IS.


Author(s):  
M. Yasmin Begum ◽  
Prathyusha Reddy Gudipati

Objective: The aim of present work was to formulate and evaluate Dasatinib (DST) loaded solid lipid nanoparticles (SLNs) as a potential anticancer drug delivery system by enhancing its solubility.Methods: SLNs consist of a solid lipid matrix where the drug was incorporated. Surfactants of GRAS grade were used to avoid aggregation and to stabilize the SLNs. DST-SLNs formulations of varying concentrations were prepared by high speed homogenization technique and evaluated for drug excipients compatibility study, poly-dispersity index, particle size analysis, surface morphology, zeta potential and drug release features.Results: It was observed that DST-SLNs with optimum quantities of poloxomer: lecithin ratio showed 88.06% drug release in 6h with good entrapment efficiency of 76.9±0.84 %. Particle size, Poly dispersity index, zeta potential and drug entrapment efficiency for the optimized formulation was found to be optimum. Stability studies revealed that the entrapment efficiency of the SLN dispersion stored in 4 °C was stable.Conclusion: Thus, it can be concluded that formulations of DST loaded SLNs are suitable carriers for improving the solubility and dissolution related problems. 


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Seyed Sadegh Shahraeini ◽  
Jafar Akbari ◽  
Majid Saeedi ◽  
Katayoun Morteza-Semnani ◽  
Shidrokh Abootorabi ◽  
...  

Abstract In the current research, the main focus was to overcome dermal delivery problems of atorvastatin. To this end, atorvastatin solid lipid nanoparticles (ATR-SLNs) were prepared by ultra-sonication technique. The prepared SLNs had a PDI value of ≤ 0.5, and the particle size of nanoparticles was in the range 71.07 ± 1.72 to 202.07 ± 8.40 nm. It was noticed that, when the concentration of lipid in ATR-SLNs increased, the size of nanoparticles and drug entrapment efficiency were also increased. Results showed that a reduction in the HLB of surfactants used in the preparation of SLN caused an increase in the particle size, zeta potential (better stability), and drug entrapment efficiency. Despite Tween and Span are non-ionic surfactants, SLNs containing these surfactants showed a negative zeta potential, and the absolute zeta potential increased when the concentration of Span 80 was at maximum. DSC thermograms, FTIR spectra, and x-ray diffraction (PXRD) pattern showed good incorporation of ATR in the nanoparticles without any chemical interaction. In vitro skin permeation results showed that SLN containing atorvastatin was capable of enhancing the dermal delivery of atorvastatin where a higher concentration of atorvastatin can be detected in skin layers. This is a hopeful promise which could be developed for clinical studies of the dermal delivery of atorvastatin nanoparticles as an anti-inflammatory agent.


2018 ◽  
Vol 8 (6) ◽  
pp. 125-131
Author(s):  
Indrayani D. Raut ◽  
Rajendra C. Doijad ◽  
Shrinivas K. Mohite ◽  
Arehalli S. Manjappa

Cisplatin (Cis diaminedichloro platinum) was the first platinum drug to be used as an anticancer drug, and it is widely used in the treatment of testicular, head, neck, ovarian and lung cancer. The use of Cisplatin is limited due to its intrinsic and acquired resistance and severe side effects such as chronic neurotoxicity and nephrotoxicity. The colloidal carriers such as emulsion, liposomes, polymeric nanoparticles have been extensively studied to overcome above limitations. The solid lipid nanoparticles (SLNs), amongst other colloidal carriers, were found to be an ideal carrier for lipophillic drug for better stability and release retardation. Cisplatin loaded solid lipid nanoparticles was prepared by microemulsion technique. Stearic acid was used as lipid. The other excipients were used as DPPG, Soya lecithin and Poloxamer P407  and acidic buffer  PH4. Also used Probe sonication for 10 min at 79 Amplitude. Cisplatin SLNs Batch C13 showed particle size of 119.23±1.52 nm, Zeta potential of -37.33±2.47 mV, % Entrapment efficiency of  90.2 ± 2.1 %., % Drug loading capacity of 1.62 ± 1.34 %., The TEM study of optimized Cisplatin SLN illustrated the spherical shape of nanoparticles. Total release amount of Cisplatin was 82.62± 2.04 % after 48 hrs. The formulation performed kinetics study followed Peppas plot equation The SLNs of Cisplatin met all the requirements of a colloidal drug delivery system. They had particle size in nanosize; their size distribution was narrow and all the particles were in spherical shape and stable. Keywords: Cisplatin, Solid Lipid nanoparticles, zeta potential, Particle size, Transmission electron Microscopy.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5432
Author(s):  
Haniza Hassan ◽  
Siti Khadijah Adam ◽  
Ekram Alias ◽  
Meor Mohd Redzuan Meor Mohd Affandi ◽  
Ahmad Fuad Shamsuddin ◽  
...  

Treatment of herpes simplex infection requires high and frequent doses of oral acyclovir to attain its maximum therapeutic effect. The current therapeutic regimen of acyclovir is known to cause unwarranted dose-related adverse effects, including acute kidney injury. For this reason, a suitable delivery system for acyclovir was developed to improve the pharmacokinetic limitations and ultimately administer the drug at a lower dose and/or less frequently. In this study, solid lipid nanoparticles were designed to improve the oral bioavailability of acyclovir. The central composite design was applied to investigate the influence of the materials on the physicochemical properties of the solid lipid nanoparticles, and the optimized formulation was further characterized. Solid lipid nanoparticles formulated from Compritol 888 ATO resulted in a particle size of 108.67 ± 1.03 nm with an entrapment efficiency of 91.05 ± 0.75%. The analyses showed that the optimum combination of surfactant and solid lipid produced solid lipid nanoparticles of good quality with controlled release property and was stable at refrigerated and room temperature for at least 3 months. A five-fold increase in oral bioavailability of acyclovir-loaded solid lipid nanoparticles was observed in rats compared to commercial acyclovir suspension. This study has presented promising results that solid lipid nanoparticles could potentially be used as an oral drug delivery vehicle for acyclovir due to their excellent properties.


Sign in / Sign up

Export Citation Format

Share Document