scholarly journals NEUROPROTECTIVE ACTIVITY OF FRACTIONAL FLOWER EXTRACTS OF MIRABILIS JALAPA AGAINST ALUMINIUM HYDROCHLORIDE INDUCED NEUROTOXICITY IN MALE WISTER RATS

Author(s):  
Sitty Manohar Babu ◽  
Suryakanta Swain ◽  
Karanam Renuka

Objective: The major objective of this present study was to evaluate the neuroprotective effect of fractional flower extracts (acetone, petroleum ether, methanol and aqueous) of Mirabilis jalapa (MJ) against aluminium hydrochloride-induced neurotoxicity in male wister rats.Methods: From the different fractional flower extracts of Mirabilis jalapa (MJ), two doses (250 and 500 mg/kg body weight) of each extract was initially selected and administered per orally 30 min prior to aluminium hydrochloride administration to the different animal groups once a day for a period of 45 d. Rat serum was collected from different animal groups on 1st, 15th, 30th and 45th days for estimation of marker enzymes, where a reduction in marker was observed. Animal was sacrificed by decapitation and the whole brain of rats was analyzed to estimate the levels of nitrite, thiobarbituric acid reactive substances (TBARS), superoxide dismutase (DOS), catalase, reduced glutathione and acetylcholinesterase (AchE).Results: On the 9th day the Wister rats were sacrificed and cerebral cortex was removed. One-half of the cerebral cortex samples from different groups of Aluminium hydrochloride treated rats were stored in FAM mixture (40% formaldehyde, acetic acid and methanol in the ratio of 1:1:8) for histological analysis. From the study confirmed that dose of 250 and 500 mg/kg bwt of methanolic extract of MJ significantly (p˂0.001) increases the reduced glutathione, superoxide dismutase and catalase level, whereas petroleum ether, acetone and aqueous fractional flower extracts of MJ significantly (p˂0.01) decreases nitrite, TBARS and AchE levels of aluminium hydrochloride treated groups.Conclusion: This result is indicating evidence for Mirabilis jalapa had a significant neuroprotective effect on aluminium hydrochloride-induced neurotoxicity and also supports by histopathological studies.

2015 ◽  
Vol 62 (2) ◽  
pp. 13-19
Author(s):  
Urmila Jarouliya ◽  
Anish Zacharia ◽  
Raj K. Keservani ◽  
Godavarthi B.K.S Prasad

Abstract Diabetes mellitus is a metabolic disorder characterised by hyperglycemia and oxidative stress. The aim of the present study is to explore the antioxidant effect of Spirulina maxima in rat model along with the histopathological observations. Diabetes was induced by feeding 10% fructose solution orally to Wistar rats (n = 6) for 30 days, analysed for plasma blood glucose and the markers of the oxidative stress [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS)]. These biochemical studies were associated with histopathological examination of liver and kidney sections. The microalga Spirulina maxima being rich in proteins and other essential nutrients is widely used as a food supplement. S. maxima at a dose of 5 and 10% per kg and the metformin (500 mg/kg) as reference drug were given orally for 30 days to the diabetic rats. Diabetic rats showed significant (p < 0.001) elevations in plasma blood glucose, thiobarbituric acid-reactive substances and significant reduction in catalase, superoxide dismutase and reduced glutathione activity. Oral administration of 5 and 10% aqueous extract of S. maxima for 30 days restored not only of blood glucose levels but also markers of oxidative stress. Histopathological observations of tissues manifested that the S. maxima administration had the protective and therapeutic effects against fructose-induced abnormalities in diabetic rats. It is concluded that S. maxima is effective in reinstating the antioxidant activity in addition to its antidiabetic effect in type 2 diabetic rats.


Beverages ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 99
Author(s):  
Tatiane Gabardo ◽  
Marina Rocha Frusciante ◽  
Jessica Pereira Marinho ◽  
Manuela dos Santos ◽  
Ana Abujamra ◽  
...  

Considering that grape juice has high levels of phenolic compounds that produce beneficial physiological effects, important for the maintenance of redox balance, the aim of this study was to evaluate the in vitro neuroprotective effect of purple grape juice on the oxidative damage caused by temozolomide (TMZ) in the cerebral cortex, hippocampus, and cerebellum of Wistar rats. In pre-incubation, TMZ increased thiobarbituric acid reactive substances (TBARS) in the cerebral cortex and cerebellum, enhanced protein oxidation in all tissues studied, increased superoxide dismutase (SOD) activity in the hippocampus, decreased SOD activity in the cerebellum, and enhanced catalase (CAT) activity in the cerebral cortex and cerebellum. In co-incubation, there was enhanced protein oxidation in the cerebral cortex and cerebellum, decreased SOD activity in the cerebellum, inhibition of CAT activity in the hippocampus, and increased CAT activity in the cerebellum. Purple grape juice improved these oxidative alterations. Therefore, the intake of grape juice might have a protective effect against diseases that affect the oxidative status of the central nervous system.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Muhammad Aslam ◽  
Ali Akbar Sial

Malva parviflora L. possesses significant antioxidant potential. This study was conducted to evaluate the neuroprotective effect of ethanol extract of the leaves of Malva parviflora against amyloid-β- (Aβ-) mediated Alzheimer’s disease. In Morris water maze model, the extract significantly restored the defected memory of amyloid-β injected mice (P<0.01). The reduced levels of brain antioxidant enzymes such as glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase were also restored significantly to similar levels as seen in normal control mice (P<0.01). The levels of lipid peroxidase were decreased significantly in treatment group mice when compared to Alzheimer group mice (P<0.01). So, this study showed that ethanol extract of the leaves of Malva parviflora possesses neuroprotective activity in mice.


2012 ◽  
Vol 84 (4) ◽  
pp. 1121-1126 ◽  
Author(s):  
Seyed M. Nabavi ◽  
Seyed F. Nabavi ◽  
Akbar H. Moghaddam ◽  
William N. Setzer ◽  
Morteza Mirzaei

This study aim to evaluate the protective effect of silymarin on sodium fluoride-induced oxidative stress in rat cardiac tissues. Animals were pretreated with silymarin at 20 and 10 mg/kg prior to sodium fluoride consumption (600 ppm through drinking water). Vitamin C at 10 mg/kg was used as standard antioxidant. There was a significant increase in thiobarbituric acid reactive substances level (59.36 ± 2.19 nmol MDA eq/g tissue) along with a decrease in antioxidant enzymes activity (64.27 ± 1.98 U/g tissue for superoxide dismutase activity and 29.17 ± 1.01 µmol/min/mg protein for catalase activity) and reduced glutathione level (3.8 ± 0.15 µg/mg protein) in the tissues homogenates of the sodium fluoride-intoxicated rats. Silymarin administration to animals before sodium fluoride consumption modified the levels of biochemical parameters.


2021 ◽  
Author(s):  
Wachiryah Thong-asa ◽  
Sujira Jedsadavitayakol ◽  
Suchawalee Jutarattananon

Abstract The present study aimed to investigate betanin’s neuroprotective effect in mice with rotenone-induced Parkinson-like motor dysfunction and neurodegeneration. Forty male ICR mice were divided into 4 groups: Sham-veh, Rot-veh, Rot-Bet100 and Rot-Bet200. Rotenone (Rot) at 2.5 mg/kg/48 h was subcutaneous injected, and betanin (Bet) at 100 and 200 mg/kg/48 h were given alternately with the Rot injections in Rot-Bet groups for 6 weeks. Motor dysfunctions were evaluated weekly using hanging wire and rotarod tests. Malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), neuronal degeneration in the motor cortex (MC), striatum (Str) and substantia nigra par compacta (SNc) were evaluated. The immunohistochemical densities of tyrosine hydroxylase (TH) in Str and in SNc were also measured. We found that rotenone significantly decreased the time to fall in a hanging wire test after the 4th week and after the rotarod test at the 6th week (p<0.05). The percentage of neuronal degeneration in MC, Str and SNc (p<0.05) significantly increased, and the TH density in Str and in SNc (p<0.05) significantly decreased. Betanin at 100 and 200 mg/kg significantly prevented MC, Str and SNc neuronal degeneration (p<0.05) and prevented the decrease of TH density in Str and in SNc (p<0.05). These findings appeared concurrently with improved effects on the time to fall in hanging wire and rotarod tests (p<0.05). Treatment with betanin significantly prevented increased MDA levels and boosted GSH, CAT and SOD activities (p<0.05). Betanin exhibits neuroprotective effects against rotenone-induced Parkinson in mice regarding both motor dysfunction and neurodegeneration. Betanin’s neurohealth benefit relates to its powerful antioxidative property. Therefore, betanin use in neurodegenerative disease therapy is interesting to study.


2013 ◽  
Vol 33 (7) ◽  
pp. 737-747 ◽  
Author(s):  
Y Cheng ◽  
J Xue ◽  
H Jiang ◽  
M Wang ◽  
L Gao ◽  
...  

Arsenic trioxide (As2O3) is a known environmental toxicant and potent chemotherapeutic agent. Significant correlation has been reported between arsenic exposure (including consumption of arsenic-contaminated water and clinical use of As2O3) and dysfunction in the nervous system. In this study, we aimed to elucidate the effect of resveratrol with neuroprotective activities on As2O3-induced oxidative damage and cerebral cortex injury. Twenty-four healthy Chinese Dragon Li cats of either sex were randomly divided into four groups: control (1 ml/kg physiological saline), As2O3 (1 mg/kg), resveratrol (3 mg/kg) and As2O3 (1 mg/kg) + resveratrol (3 mg/kg). As2O3+resveratrol-treated group were given resveratrol (3 mg/kg) 1 h before As2O3 (1 mg/kg) administration. Pretreatment with resveratrol upregulated the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the level of reduced glutathione and the ratio of reduced glutathione to oxidised glutathione, and accumulation of arsenic in the cerebral cortex. These findings support neuroprotective effect of resveratrol on As2O3 toxicity in feline brain and provide a better understanding of the mechanism that resveratrol modulates As2O3-induced oxidative damage and a stronger rational for clinical use of resveratrol to protect brain against the toxicity of arsenic.


Author(s):  
I. A. Bandas ◽  
M. I. Kulitska ◽  
T. Ya. Yaroshenko ◽  
M. M. Korda

Introduction. Nanoparticles are widely used in scientific research, industry and medicine. The established capability of nanoparticles to increase the transport of chemicals and drugs into cells and through the body barriers makes the possibility of potentiating the chemical contaminants toxicity in case of their simultaneous intake an urgent matter.The aim of the study – to learn the effect of silicon dioxide nanoparticles on the ability of chemical lead acetate toxicant to cause oxidative and nitro-oxidative stress in blood serum and liver of experimental rats.Research Methods. Experiments were conducted on 40 white outbred male rats, 150–160 g in weight, which were divided into 4 groups. Animals of the group (control) 1 were daily administered with saline solution intragastrically. The rats of the group 2 were administered with colloidal solution of silicon dioxide nanoparticles in a dose of 50 mg/kg of body weight. Animals of the group 3 were injected with lead acetate in aqueous solution in a dose of 20 mg/kg of body weight (expressed as lead), the group 4 – with solution of silicon dioxide nanoparticles with lead acetate daily during 3 weeks at the same doses. The total activity of NO-synthase, catalase, superoxide dismutase, NOx content, thiobarbituric acid reactive substances, oxidized modified proteins, reduced glutathione, ceruloplasmin and total serum antioxidant activity were determined in serum and liver. The obtained parameters were statistically processed.Results and Discussion. It was proved that silicon dioxide nanoparticles did not influence the studied parameters considerably. The administration of lead acetate to rats caused significant changes of all indices. However, the maximum changes of the parameters were evidenced in the group of animals in cases of simultaneous administration of silicon dioxide nanoparticles and lead acetate. In that case, the content of thiobarbituric acid reactive substances, NOx, oxidized modified proteins, reduced glutathione, and superoxide dismutase activity in blood serum and liver homogenate of rats varied significantly compared with the parameters of the group of animals that were administered with the chemical toxicant only.Conclusion. Silicon dioxide nanoparticles enhance the capability of the chemical lead acetate toxicant to cause oxidative and nitro-oxidative stress in blood serum and liver of the experimental rats.


1996 ◽  
Vol 90 (4) ◽  
pp. 255-260 ◽  
Author(s):  
Ranjini K. Sundaram ◽  
Anusha Bhaskar ◽  
Selvamani Vijayalingam ◽  
Moopil Viswanathan ◽  
Rema Mohan ◽  
...  

1. This study was conducted on 467 cases of non-insulin-dependent diabetes mellitus and 180 healthy controls. Lipid peroxidation products in plasma and erythrocytes were assayed as thiobarbituric acid reactive substances, along with the erythrocyte antioxidant enzymes, namely superoxide dismutase, catalase and glutathione peroxidase. In addition, scavenger vitamins A, C and E and reduced glutathione levels in blood were also measured. 2. Lipid peroxidation was significantly raised within the first 2 years of diagnosis, and superoxide dismutase, catalase, reduced glutathione and vitamins C and E were significantly lowered. 3. These changes were correlated with the duration of the disease and were of a higher magnitude with the development of complications. 4. The results suggest that the antioxidant deficiency and excessive peroxide-mediated damage may appear early on in non-insulin-dependent diabetes mellitus, before the development of secondary complications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 882
Author(s):  
Masood Alam Khan ◽  
Arif Khan ◽  
Mohd Azam ◽  
Khaled S. Allemailem ◽  
Faris Alrumaihi ◽  
...  

Cryptococcus neoformans infections rose sharply due to rapid increase in the numbers of immunocompromised individuals in recent years. Treatment of Cryptococcosis in immunocompromised persons is largely very challenging and hopeless. Hence, this study aimed to determine the activity of ellagic acid (EA) in the treatment of C. neoformans in cyclophosphamide injected leukopenic mice. A liposomal formulation of ellagic acid (Lip-EA) was prepared and characterized, and its antifungal activity was assessed in comparison to fluconazole (FLZ). The efficacy of the drug treatment was tested by assessing survival rate, fungal burden, and histological analysis in lung tissues. The safety of the drug formulations was tested by investigating hepatic, renal function, and antioxidant levels. The results of the present work demonstrated that Lip-EA, not FLZ, effectively eliminated C. neoformans infection in the leukopenic mice. Mice treated with Lip-EA (40 mg/kg) showed 70% survival rate and highly reduced fungal burden in their lung tissues, whereas the mice treated with FLZ (40 mg/kg) had 20% survival rate and greater fungal load in their lungs. Noteworthy, Lip-EA treatment alleviated cyclophosphamide-induced toxicity and restored hepatic and renal function parameters. Moreover, Lip-EA treatment restored the levels of superoxide dismutase and reduced glutathione and catalase in the lung tissues. The effect of FLZ or EA or Lip-EA against C. neoformans infection was assessed by the histological analysis of lung tissues. Lip-EA effectively reduced influx of inflammatory cells, thickening of alveolar walls, congestion, and hemorrhage. The findings of the present study suggest that Lip-EA may prove to be a promising therapeutic formulation against C. neoformans in immunocompromised persons.


Sign in / Sign up

Export Citation Format

Share Document