Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review

Nanomedicine ◽  
2021 ◽  
Author(s):  
Yu-Qi Liu ◽  
Li-Ying Qin ◽  
Hong-Jiao Li ◽  
Yi-Xi Wang ◽  
Rui Zhang ◽  
...  

With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 360
Author(s):  
Michał Osuchowski ◽  
Filip Osuchowski ◽  
Wojciech Latos ◽  
Aleksandra Kawczyk-Krupka

Photodynamic Therapy (PDT) is a cancer treatment that uses light, a photosensitizer, and oxygen to destroy tumors. This article is a review of approaches to the treatment of prostate cancer applying upconversion nanoparticles (UCNPs). UCNPs have become a phenomenon that are rapidly gaining recognition in medicine. They have proven to be highly selective and specific and present a powerful tool in the diagnosis and treatment of prostate cancer. Prostate cancer is a huge health problem in Western countries. Its early detection can significantly improve patients’ prognosis, but currently used diagnostic methods leave much to be desired. Recently developed methodologies regarding UCNP research between the years 2021 and 2014 for prostate cancer PDT will also be discussed. Current limitations in PDT include tissue irradiation with visible wavelengths that have a short tissue penetration depth. PDT with the objectives to synthesize UCNPs composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue is a subject of intense research in prostate cancer.


2020 ◽  
Vol 2 (2) ◽  
pp. 26

Photothermal therapy is an emerging method of cancer treatment in which tumors are ablated by heating agents using near-infrared light (700–1000 nm). A semiconductor with a bandgap between 0.3–0.7 eV would, therefore, efficiently emit near-infrared light. The new “magic” material graphene has a bandgap of zero, which is advantageous with regard to designing a new material with a suitable bandgap for the emission of near-infrared light. In our investigations, using the first-principles density functional theory calculation method, we aimed to and successfully designed graphene-based materials with a direct bandgap of 0.68 eV. They have the potential to be optimal and efficient near-infrared light sources due to their narrow yet fitting bandgap. The present results open up a new avenue for the application of graphene-based materials to assist in photothermal therapy.


2020 ◽  
Vol 5 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Debabrata Maiti ◽  
Jing Zhong ◽  
Zheng Zhang ◽  
Hailin Zhou ◽  
Saisai Xion ◽  
...  

X-rays with high deep tissue penetration could be acted as an excellent excited light source for enhanced photodynamic therapy (PDT), avoiding the weak penetration of near-infrared light and further improving the therapeutic efficiency of PDT.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 839 ◽  
Author(s):  
Taehoon Sim ◽  
Chaemin Lim ◽  
Ngoc Ha Hoang ◽  
Yuseon Shin ◽  
Jae Chang Kim ◽  
...  

Combination therapy is considered to be a promising strategy for improving the therapeutic efficiency of cancer treatment. In this study, an on-demand pH-sensitive nanocluster (NC) system was prepared by the encapsulation of gold nanorods (AuNR) and doxorubicin (DOX) by a pH-sensitive polymer, poly(aspartic acid-graft-imidazole)-PEG, to enhance the therapeutic effect of chemotherapy and photothermal therapy. At pH 6.5, the NC systems formed aggregated structures and released higher drug amounts while sustaining a stable nano-assembly, structured with less systemic toxicity at pH 7.4. The NC could also increase antitumor efficacy as a result of improved accumulation and release of DOX from the NC system at pHex and pHen with locally applied near-infrared light. Therefore, an NC system would be a potent strategy for on-demand combination treatment to target tumors with less systemic toxicity and an improved therapeutic effect.


2017 ◽  
Vol 46 (36) ◽  
pp. 12147-12157 ◽  
Author(s):  
Chen Wang ◽  
Liangge Xu ◽  
Jiating Xu ◽  
Dan Yang ◽  
Bin Liu ◽  
...  

Core–shell nanostructures consisting of plasmonic materials and lanthanide-doped upconversion nanoparticles (UCNPs) show promising applications in theranostics including bio-imaging, diagnosis and therapy.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mary K. Popp ◽  
Imane Oubou ◽  
Colin Shepherd ◽  
Zachary Nager ◽  
Courtney Anderson ◽  
...  

Photothermal therapy (PTT) treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs) and near-infrared (NIR) light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED) light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heatin vitroandin vivomodels to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document