scholarly journals Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds

2021 ◽  
Vol 41 ◽  
pp. 204-215
Author(s):  
I Gendviliene ◽  
◽  
E Simoliunas ◽  
M Alksne ◽  
S Dibart ◽  
...  

The demand for bone grafting procedures in various fields of medicine is increasing. Existing substitutes in clinical practice do not meet all the criteria required for an ideal bone scaffold, so new materials are being sought. This study evaluated bone regeneration using a critical-size Wistar rat’s calvarial defect model. 12 male and 12 female rats were evenly divided into 3 groups: 1. Negative and positive (Geistlich Bio-Oss®) controls; 2. polylactic acid (PLA) and PLA/hydroxyapatite (HA); 3. PLA/HA cellularised with dental pulp stem cells (DPSC) and PLA/HA extracellular matrix (ECM) scaffolds. PLA/HA filament was created using hot-melt extrusion equipment. All scaffolds were fabricated using a 3D printer. DPSC were isolated from the incisors of adult Wistar rats. The defects were evaluated by micro-computed tomography (µCT) and histology, 8 weeks after surgery. µCT revealed that the Bio-Oss group generated 1.49 mm3 and PLA/HA ECM 1.495 mm3 more bone volume than the negative control. Histology showed a statistically significant difference between negative control and both (Bio-Oss and PLA/HA ECM) groups in rats of both genders. Moreover, histology showed gender-specific differences in all experimental groups and a statistically significant difference between cellularised PLA/HA and PLA/HA ECM groups in female rats. Qualitative histology showed the pronounced inflammation reaction during biodegradation in the PLA group. In conclusion, the bone-forming ability was comparable between the Bio-Oss and PLA/HA ECM scaffolds. Further research is needed to analyse the effects of ECM and PLA/HA ratio on osteoregeneration.

2017 ◽  
Vol 28 (8) ◽  
pp. 730-748 ◽  
Author(s):  
Francesco Paduano ◽  
Massimo Marrelli ◽  
Noura Alom ◽  
Mahetab Amer ◽  
Lisa J. White ◽  
...  

2015 ◽  
Vol 20 (7) ◽  
pp. 076013 ◽  
Author(s):  
Hamideh Salehi ◽  
Pierre-Yves Collart-Dutilleul ◽  
Csilla Gergely ◽  
Frédéric J. G. Cuisinier

Author(s):  
Desi Sandra Sari ◽  
Fourier Dzar Eljabbar Latief ◽  
Ferdiansyah ◽  
Ketut Sudiana ◽  
Fedik Abdul Rantam

The tissue engineering approach for periodontal tissue regeneration using a combination of stem cells and scaffold has been vastly developed. Mesenchymal Stem Cells (MSCs) seeded with Bovine Teeth Scaffold (BTSc) can repair alveolar bone damage in periodontitis cases. The alveolar bone regeneration process was analyzed by micro-computed tomography (µ-CT) to observe the structure of bone growth and to visualize the scaffold in 3-Dimensional (3D). The purpose of this study is to analyze alveolar bone regeneration by µ-CT following the combination of MSCs and bovine teeth scaffold (MSCs-BTSc) implantation in the Wistar rat periodontitis model. Methods. MSCs were cultured from adipose-derived mesenchymal stem cells of rats. BTSc was taken from bovine teeth and freeze-dried with a particle size of 150-355 µm. MSCs were seeded on BTSc for 24 hours and transplanted in a rat model of periodontitis. Thirty-five Wistar rats were made as periodontitis models with LPS induction from P. gingivalis injected to the buccal section of interproximal gingiva between the first and the second mandibular right-molar teeth for six weeks. There were seven groups (control group, BTSc group on day 7, BTSc group on day 14, BTSc group on day 28, MSCs-BTSc group on day 7, MSCs-BTSc group on day 14, MSCs-BTSc group on day 28). The mandibular alveolar bone was analyzed and visualized in 3D with µ-CT to observe any new bone growth. Statistical Analysis. Group data were subjected to the Kruskal Wallis test followed by the Mann-Whitney (p <0.05). The µ-CT qualitative analysis shows a fibrous structure, which indicates the existence of new bone regeneration. Quantitative analysis of the periodontitis model showed a significant difference between the control model and the model with the alveolar bone resorption (p <0.05). The bone volume and density measurements revealed that the MSCs-BTSc group on day 28 formed new bone compared to other groups (p <0.05). Administration of MSCs-BTSc combination has the potential to form new alveolar bone.


Author(s):  
Samuele Laudani ◽  
Valentina La Cognata ◽  
Rosario Iemmolo ◽  
Gabriele Bonaventura ◽  
Giusy Villaggio ◽  
...  

Author(s):  
Endang W. Bachtiar ◽  
Fatma S. Dewi ◽  
Ahmad Aulia Yusuf ◽  
Rahmi Ulfiana

This is preliminary study in order to investigate the effect of dental pulp stem cells (DPSCs) on bone regeneration in an animal model. New Zealand rabbits were used as animal model. The critical defect was created in femoral bone and transplantation of DPSCs applied into bone defect. A colorimetric assay was used to detect ALP level in rabbit’s serum. Bone tissue regeneration was evaluated by histological analysis. In the 2nd week, the treated rabbit show increasing in the activity of ALP (157,925 μU) compared to control rabbit (155,361 μU). This increasing trend continues significantly in DPSCs rabbit (169.750 μU) compared to control rabbit (160.406) after 4 weeks. Histological evaluation revealed that the amount of bone lamellae and osteocytes were filled the defect area of DPSCs treated rabbit. Conclusions: Transplantation of DPSCs accelerating bone regeneration by raising ALP level and forming new bone tissue.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Yasuyuki Fujii ◽  
Yoko Kawase-Koga ◽  
Hironori Hojo ◽  
Fumiko Yano ◽  
Marika Sato ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4063
Author(s):  
Shiau-Ting Shiu ◽  
Wei-Zhen Lew ◽  
Sheng-Yang Lee ◽  
Sheng-Wei Feng ◽  
Haw-Ming Huang

Stem cells have attracted great interest in the development of tissue engineering. However, the self-regeneration and multi-differentiation capabilities of stem cells are easily impaired during cell transplantation. Recent studies have demonstrated that Sapindus mukorossi (S. mukorossi) seed oil has various positive biological effects. However, it is not yet clear whether S. mukorossi seed oil can increase the growth and differentiation of dental pulp mesenchymal stem cells (DPSCs). The aim of this study is to investigate the effects of S. mukorossi seed oil on the proliferation and differentiation of DPSCs. DPSCs with and without S. mukorossi seed oil, respectively, were evaluated and compared. The viabilities of the cells were assessed by MTT tests. The osteogenetic and odontogenetic capacities of the DPSCs were tested using Alizarin red S staining and alkaline phosphatase (ALP) activity assays. In addition, real-time PCR was performed to examine the gene expression of ALP, BMP-2 and DMP-1. Finally, extracellular matrix vesicle secretion was detected via scanning electron microscopy. No significant difference was observed in the viabilities of the DPSCs with and without S. mukorossi seed oil, respectively. However, under osteogenic and odontogenic induction, S. mukorossi seed oil increased the secretion of mineralized nodules and the ALP activity of the DPSCs (p < 0.05). The ALP gene expression of the differentiation-induced DPSCs was also enhanced. Finally, a greater secretion of extracellular matrix vesicles was detected in the DPSCs following odontogenic induction complemented with S. mukorossi seed oil. Overall, the present results show that S. mukorossi seed oil promotes the osteogenic/odontogenic differentiation and matrix vesicle secretion of DPSCs.


Sign in / Sign up

Export Citation Format

Share Document