scholarly journals Comparison of Mechanical Properties, Heat Affected Zone of 304 Stainless Steel of Joints by TIG Welding, & Electric Arc Welding

Author(s):  
Agajuddin Beg
2020 ◽  
Vol 10 (11) ◽  
pp. 3908 ◽  
Author(s):  
Ayse Basmaci ◽  
Seckin Filiz ◽  
Mümin Şahin

In recent years, with the development of welding methods, using these methods in manufacturing industry and in advanced engineering has become more popular. In this study, mechanical properties of rods obtained by friction welding and electric arc welding are compared. Hence, three specimens with different material properties are manufactured, two of which are welded by friction welding and one of which is welded by electric arc welding. These three specimens are adapted to the ASTM E8-04 standard with the help of a universal lathe. Moreover, the tensile stress values and the elasticity modulus of all these specimens are obtained as a result of tensile tests. Accordingly, the effects of the type of welding and material properties used in manufacturing on the mechanical behavior of the specimens are examined. In addition, specimens taken from the cracked surfaces of the pieces broken from the specimens as a result of the tensile test are examined with SEM (scanning electron microscopy). These examinations reveal the microstructure of the specimens. The elemental distribution data obtained as a result of examinations with SEM and the mechanical property data obtained as a result of tensile tests support each other. Furthermore, effects of a heat affected zone (HAZ) on the mechanical properties of the rod are investigated as a functionally graded material.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012018
Author(s):  
Suheni ◽  
A A Rosidah ◽  
D P Ramadhan ◽  
T Agustino ◽  
F F Wiranata

Abstract AISI 1045 and 304 stainless steel are widely used in automotive and industrial fields However, both of these steels have their own advantages and disadvantages. AISI 1045 is not resistant to corrosion but has good wear resistance and low price. Meanwhile, the 304 stainless steel provides good corrosion resistance and mechanical properties but is costly. Their combination is able to provide a good property and reduce the costs. Thus, in order to combine these two metals, shield metal arc welding is carried out using welding groove and electrode variation. The groove variations used were double bevel, V, and double V-groove, additionally, the electrode variations used were E6013 and E7016. Then, the welding results were characterized using the tensile strength and macrostructure analysis. The results revealed that the specimen using E7016 electrode for the double V-groove resulted in the highest tensile test results the value of 270.48 MPa yield strength, 411.49 MPa tensile strength, and 19.81% elongation. The macrostructure analysis showed that the specimens using E7016 electrode gave a narrow HAZ that led to higher mechanical properties.


Author(s):  
Augusta Ijeoma Ekpemogu ◽  
Olamide Emmanuel Ariwoola ◽  
Akeem Abiodun Rasheed ◽  
Oladipupo Akinleye Ogundele ◽  
Taiwo Ebenezer Abioye ◽  
...  

In this work, gas metal arc welding of AISI 304 stainless steel at varying compositions of argon-CO2 shielding environment was performed using an established optimum parametric combination. Thereafter, investigations on the microstructure of the welded joints and mechanical properties of the weldments were carried out. Weldments of excellent surface quality that are void of spatters and pores were obtained when the shielding gas composition (wt.%) range is between 100% argon and 75% argon - 25% CO2. Increasing percentage composition of CO2 beyond 25% resulted in irregular bead formation characterized with spatters and pores. The hardness of the welded joint became significantly high as the CO2 composition in the shielding gas increased. The highest value of 310 HV was obtained when the shielding gas composition was 5% argon- 95% CO2. The least (220 HV) was obtained when the shielding gas was 100% argon. High ultimate tensile strength (596 - 378 MPa) was achieved when the shielding gas composition range is between 100% argon and 75% argon-25% CO2. The UTS dropped significantly as the CO2 composition in the shielding gas increased beyond 25%. It decreased from 336 MPa at 70% argon-30% CO2 shielding gas composition to 133 MPa when 100% CO2 was utilized as the shielding gas. At the end, the effects of the CO2 addition and suitable composition of CO2 addition to argon shielding environment during GMAW of AISI 304 stainless steel have been established.


Author(s):  
R I Suleimanov ◽  
L Z Zainagalina ◽  
M Ya Khabibullin ◽  
L M Zaripova ◽  
N O Kovalev

2014 ◽  
Vol 14 (1) ◽  
pp. 14-23 ◽  
Author(s):  
A. Świerczyńska ◽  
J. Łabanowski ◽  
D. Fydrych

ABSTRACT The tests results of superduplex stainless steel welded joints made with a different heat input, using automatic submerged arc welding (SAW) and semi-automatic flux-cored arc welding (FCAW) have been presented. Metallographic examinations, the measurements of the ferrite content, the width of the heat affected zone (HAZ) and the hardness of the welds in characteristic areas have been performed. Significant differences in the amount of ferrite in the weld metal and in the heat affected zone microstructure of joints were found.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1917
Author(s):  
Rongshan Qin

This work provides a critical assessment of electric effects on the microstructure evolution at the heat-affected zone in electric arc welding. Electric effects are the interactions between electromagnetic fields and materials’ microstructures. They differ from the arc effect and the Joule heating effect by providing an alternative contribution to nucleation, grain growth, recrystallisation and tempering. The influence of the electric effect on grain size, defects, anisotropic properties, precipitates and residual stress has been examined kinetically and thermodynamically. The use of adaptable electric current densities, pulse durations, pulse frequencies and electrode movements is suggested to achieve desirable microstructures and mechanical properties for the weldments.


2017 ◽  
Author(s):  
MUHAMMAD NAZMI HAKIM BIN RIDZUAN

Gas tungsten arc welding is the process repairing and widely used in heavy engineering for joining metal. It can be uses for various type of metal and application. The aim of this project is to study the effects of 304 stainless steel with 3 mm thickness on mechanical properties and its microstructure analysis towards gas tungsten arc welding method. The variables set up in this project were current, gas flow rate and welding direction upon rolling direction of stainless steel sheet. Three current setup were used which is 60 A, 80 A and 100 A Type of filler metal used in this project was ER 308L with 1.6 diameter. Two set up for gas flow rate were used which is 8 l/m and 12 l/m. Testing that carried out were tensile test, Vickers macro hardness test with 10 kgf load and microstructure analysis by using optical microscope. The effects of microstructure in austenitic stainless steel welds is discussed. From the mechanical properties procedures, the strength of the weld metal was obtain. For hardness testing, the most important zone to be focused were heat-affected zone (HAZ) and weld metal (WM). The integrity of the welding tested by using tensile test and hardness test with different amount of current and gas flow rate.


Arkus ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 134-139
Author(s):  
Hendrikus Dwijayanto Wibowo Sutarjo

This literature review was aims  to describe corrosion rate stainless steel 304 in sulfuric acid. Immerse process do in 700C temperature for 6 hours and than in 29oC temperature for 18 hours every day. This condition aim to get closer to the actual use in the manufacture of tubes of reactor SAMOP (sub critical assembly for Mo99Prad action). Specimen after TIG welding and electric arc welding cleaned from crust and than measured, drawing, balanced, and record the first weight. The survey findings show heavy shrinkage sample, it is well visible on the corrosion pH 0.5 in electric arc welding of 0.105 gram/dm2/month for corrosion 0.026 gram/dm2/month without welding and pH 0.2, arc welding of 0.045 gram/dm2/month, pH 0.2 no Las 0.02 gram/dm2/month. Specimen that has been welded have significant differences in corrosion rate compare to specimen that have not weld.


Sign in / Sign up

Export Citation Format

Share Document