Analysis of Neuromorphic Computing Systems and its Applications in Machine Learning
The domain of engineering has always taken inspiration from the biological world. Understanding the functionalities of the human brain is one of the key areas of interest over time and has caused many advancements in the field of computing systems. The computational capability per unit power per unit volume of the human brain exceeds the current best supercomputers. Mimicking the physics of computations used by the nervous system and the brain can bring a paradigm shift to the computing systems. The concept of bridging computing and neural systems can be termed as neuromorphic computing and it is bringing revolutionary changes in the computing hardware. Neuromorphic computing systems have seen swift progress in the past decades. Many organizations have introduced a variety of designs, implementation methodologies and prototype chips. This paper discusses the parameters that are considered in the advanced neuromorphic computing systems and the tradeoffs between them. There have been attempts made to make computer models of neurons. Advancements in the hardware implementation are fuelling the applications in the field of machine learning. This paper presents the applications of these modern computing systems in Machine Learning.