scholarly journals Bridge Design and Analysis using BIM Software

Author(s):  
Aniruddha Chinchkhede

In the Bridge project, design and analysis include two main components: preliminary design and detailed design, to integrate Building Information Modeling (BIM) in the design process of the Bridge. Firstly 3D modelling of the Bridge needs to be carried out, that means. It has transferred 2D drawing into 3D models. The BIM mainly focuses on modelling analysis, detection and feedback and design. Cantilever bridge construction is a step-by-step construction of a cantilever in segments and stitching them to segments previously casted by prestressing. When the cantilever segments are added to both sides of the pier, the bending moment in Bridge is negative & increases with the addition of each segment. While key blocks are added, the Bridge is converted from cantilever form to continuous form & the negative bending moment on the pier decreases. In this project, a bridge model of span 130 m has been designed and analysed in midas civil to observe the rate of change of Bending moment, reactions and deflections at different stages of construction in construction sequence and Service conditions.

2020 ◽  
Vol 9 (3) ◽  
pp. 167
Author(s):  
Yonghui Jiang ◽  
Aiqun Li ◽  
Linlin Xie ◽  
Miaole Hou ◽  
Ying Qi ◽  
...  

Building-information-modeling for cultural heritage (HBIM), which is established using surveying data, can be used to conserve architectural heritage. The development of an HBIM model for ancient wooden architecture (AWA) structures requires interdisciplinary integration. A parametric model for the main components that intelligently integrates the historical knowledge, as well as an intelligent modeling method for these components, are two critical issues required to bridge the existing gap and improve the application of HBIM. Taking an AWA structure constructed during the Liao and Song Dynasties as an example, the parametric model for the typical components, with emphasis on commonality and characteristics, were first proposed. Subsequently, an intelligent automated modeling method was developed and programmed using Dynamo, which can intelligently identify the component type and determine the invisible dimensions. A complicated dou-gong was successfully established with surveying data using the proposed method within five minutes, thereby validating the reliability and efficiency of this method. Furthermore, the proposed method was used to establish the HBIM model of Yingxian Wood Pagoda, which is the oldest and tallest AWA structure in China with a height of 65.88 m. The research findings will provide an essential reference for the conservation of wooden architectural heritage structures.


2020 ◽  
Vol 12 (17) ◽  
pp. 6713
Author(s):  
Youngsoo Byun ◽  
Bong-Soo Sohn

Building Information Modeling (BIM) refers to 3D-based digital modeling of buildings and infrastructure for efficient design, construction, and management. Governments have recognized and encouraged BIM as a primary method for enabling advanced construction technologies. However, BIM is not universally employed in industries, and most designers still use Computer-Aided Design (CAD) drawings, which have been used for several decades. This is because the initial costs for setting up a BIM work environment and the maintenance costs involved in using BIM software are substantially high. With this motivation, we propose a novel software system that automatically generates BIM models from two-dimensional (2D) CAD drawings. This is highly significant because only 2D CAD drawings are available for most of the existing buildings. Notably, such buildings can benefit from the BIM technology using our low-cost conversion system. One of the common problems in existing methods is possible loss of information that may occur during the process of conversion from CAD to BIM because they mainly focus on creating 3D geometric models for BIM by using only floor plans. The proposed method has an advantage of generating BIM that contains property information in addition to the 3D models by analyzing floor plans and other member lists in the input design drawings together. Experimental results show that our method can quickly and accurately generate BIM models from 2D CAD drawings.


Author(s):  
F. Capocchiano ◽  
R. Ravanelli ◽  
M. Crespi

Within the construction sector, Building Information Models (BIMs) are more and more used thanks to the several benefits that they offer in the design of new buildings and the management of the existing ones. Frequently, however, BIMs are not available for already built constructions, but, at the same time, the range camera technology provides nowadays a cheap, intuitive and effective tool for automatically collecting the 3D geometry of indoor environments. It is thus essential to find new strategies, able to perform the first step of the scan to BIM process, by extracting the geometrical information contained in the 3D models that are so easily collected through the range cameras.<br><br> In this work, a new algorithm to extract planimetries from the 3D models of rooms acquired by means of a range camera is therefore presented. The algorithm was tested on two rooms, characterized by different shapes and dimensions, whose 3D models were captured with the Occipital Structure Sensor<sup>TM</sup>. The preliminary results are promising: the developed algorithm is able to model effectively the 2D shape of the investigated rooms, with an accuracy level comprised in the range of 5 - 10 cm. It can be potentially used by non-expert users in the first step of the BIM generation, when the building geometry is reconstructed, for collecting crowdsourced indoor information in the frame of BIMs Volunteered Geographic Information (VGI) generation.


2019 ◽  
Vol 4 (1) ◽  
pp. 8 ◽  
Author(s):  
José Neves ◽  
Zita Sampaio ◽  
Manuel Vilela

Building Information Modeling (BIM) is an Industry 4.0 methodology that is increasingly used in the domain of Architecture, Engineering, and Construction (AEC). BIM emerges as a new methodology, one that is more collaborative and based on parametric three-Dimensional (3D) models, centralizing different types of information of a geometric, physical, and economic nature. The purpose of this paper is to analyze the application of the BIM methodology to a rail track rehabilitation case study using a geotextile and geogrid in the ballast layer base. The creation of the 3D and 4D BIM models was performed using various BIM-based tools, which made it possible to achieve the spatial and parametric representation of the rail track and the simulation of the main construction tasks. A new BIM object pertaining to the rail track was created. This paper describes the procedures applied in achieving the BIM models, the limitations involved, and the interoperability between the BIM tools. Additionally, the potential for information extraction with respect to the infrastructure design, construction, and operation, e.g., planning and scheduling, quantities, graphic outputs, and track geometry quality, was demonstrated. It was concluded that the BIM methodology was viable and could be implemented with benefits, despite certain difficulties and limitations, which emphasize the need for further developments.


2015 ◽  
Vol 11 (5) ◽  
pp. 57
Author(s):  
Li Wang ◽  
Zhi-kai Zhao ◽  
Na Xu

3D models classification is a critical process of Building Information Modeling (BIM). A Deep Learning Approach is proposed to classify 3D models in BIM environment. The ray based feature extraction algorithm is used to extract features of 3D models and form features matrix. The Deep Belief Network constructed by Restricted Boltzmann Machines applies the features matrix and classifies the models adopting the effective training process. The process of training DBN is layer by layer. Experiments were taken on the public 3D model library of PSB model database. The results show that compared with several commonly used classification method, the proposed method of this paper has achieved good results in the 3D model classification for efficiently BIM.


2018 ◽  
Vol 1 (3) ◽  
pp. 87
Author(s):  
Chao Lei

After the concept of BIM (Building Information Modeling) was proposed around 2000, it developed slowly. With the rapid development of hardware, the IFC standard provides reference standards for BIM collaborative design, enabling BIM collaborative design to effectively solve the shortcomings of traditional 2D drawing design and become a new market trend.


2020 ◽  
Author(s):  
Yongyeon Cho

This book is for the beginning level of both architecture and interior design students who learn computer graphic communication software. The author developed multiple tutorials to teach three computer graphic applications, AutoCAD, Revit, and Enscape. AutoCAD is an essential computer drafting software which is 2D drawing software. Revit is a Building Information Modeling software, which is 3D based modeling software. Lastly, Enscape is a real-time rendering, animation, and virtual reality plug-in for users' 4D experiences.


Author(s):  
Veronika Krausková ◽  
Henrich Pifko

Abstract Innovative technologies help automate the work of the designer. A 3D model of the building can be used to calculate the required values. This will also allow you to create associative sections that, when changing the geometry of the 3D model, automatically adjust the drawn elements on the resulting 2D drawing. Information technologies enable participants from all over the world to work on one project and, thanks to the BIM (building information modelling) method, to design buildings during their life cycle more efficiently. At present, critical studies are published on interoper-ability in BIM and its lack of coordination or amount of information that is misinterpreted, etc. However, working in BIM is the most effective way to use computer technology to design buildings. There is a lot of information about the building in the 3D model itself, which can also be used for purposes other than construction (building management, reconstruction). But how to process a large amount of information in a 3D model? Many buildings already have their 3D models shared on cloud platforms, these contain information that could help, for example, find solutions for green construction using artificial intelligence (AI). We meet with AI every day. It supports internet search engines, predicts auto-completion words as you type. AI can also be found in architecture – not only as visions at exhibitions, but also in research on process optimization in BIM.


Author(s):  
E. S. Soonwald ◽  
A. E. Wojnarowski ◽  
S. G. Tikhonov ◽  
O. V. Artemeva ◽  
S. V. Tyurin

<p><strong>Abstract.</strong> Development and implementation of information models of spatial objects affect broadest application areas currently. Building Information Models (BIMs) are now becoming extremely popular. These models are able to describe a great number characteristics of building or engineering construction, including physical and functional properties, economic parameters, visual parameters, etc. BIM use is introduced currently as the mandatory aspect of building life cycle management, from design and construction to demolition. However, implementation of the BIM concept into the reconstruction, restoration and conservation of historical and cultural heritage remains the least developed domain. Therefore, research and development activities concerned with HBIMs (Historical Building Information Models) are particularly relevant. Saint Petersburg being the second largest Russian city has a huge number of architectural monuments, while industrial architecture composes a special category of these monuments. We provided a number of research and development activities devoted to the 3D information modelling of industrial architectural monuments located in St. Petersburg. Context of these works was established by the reconstruction and adaptation of these monuments to modern needs. 3D models of buildings were produced basing on results of the laser scanning and photogrammetric survey. Basing on our work, we have formalized main approaches to design and implementation of Building Information Models of the industrial architectural monuments.</p>


Author(s):  
J. Suziedelyte Visockiene ◽  
E. Tumeliene

<p><strong>Abstract.</strong> The implementation of Building Information Modelling (BIM) in each project, which is planned, have a design and construction stages. In the construction stage the objects are modelled by architects, engineers, and surveyors. Modelling process allowed to construct a BIM, which replaces two-dimensional (2D) building information into a three-dimensional (3D). Noticed that 3D BIM created by surveyors is not the same as 3D BIM, which is created by architects. Therefore, the purpose of this study is to identify the differences of the created 2D draftings made by 3D models between surveyors and architect’s. The surveyors make their model by using Unnamed Aerial Vehicle (UAV) system: Airborne Drone Data and Data photogrammetric processing technology. The 3D models accuracy is assessed by UAV images processing. The 3D information should be used to calculate façade geometry, volume, distances, contours, which are in the shadowed side of the house, and create 2D façade draftings. Traditionally, architects used 2D building’s façade draftings for pre-design in Construction Projects (CP). 3D architectural model is created by using structural 2D draftings created with Autodesk software. The architectural 3D model is more convenient for the general design and the visual view, it is easily to evaluate the impact of the changes that will be made. The 3D architectural model helps to finish a project at a low cost and also to evaluate the effect of the changes made. The 3D model from surveys measurements shows real view of an object (with deformations), meanwhile the 3D model from architects is a corrected image. Discrepancies between surveyors and architect’s 2D models made by 3D virtual reality (VR) are analysed in this article.</p>


Sign in / Sign up

Export Citation Format

Share Document