scholarly journals Design and Development of Roll Cage and Steering System of Go-Kart

Author(s):  
Adinarayan Dhananjay Kamat

Go-kart is a one of the motor sport which is played globally. This racing does not require any professional drivers or greater speed. It is a light weight and cheaper vehicle which does not require suspension and differential. In this paper we are concentrating on Roll cage and steering system of Go-kart. While keeping it light weight, chassis material is selected as AISI 1018 which give more tensile strength, machinability, and can sustain maximum load. For designing and analysis CATIA and ANSYS soft wares were used. Whereas in steering system the Ackermann steering mechanism is used for attaining maximum cornering speed, without the slippage of tires. This also gives us minimum turning radius, helping us to take sharp turns when the driver has to take sharp corners.

2014 ◽  
Vol 1078 ◽  
pp. 187-190
Author(s):  
Zhong Ying Liu

Based on the two degree of freedom model of kiloton all-terrain crane, he effects of relationship of deflection angle on turning radius were investigated in multi-axle steering system. MATLAB/Simulink was used to analyze the relationship of every axle in multi-axle steering and optimize the minimum turning radius. The studies show that the kiloton all-terrain crane adapted all-wheel steering driving at 5speed , and the front wheel angle was 32.3°, as compared to the rolling radius before optimization, the turning radius in all wheel turnaround reduced by 33%, which improved the vehicle capacity through the complex curve and increased the vehicle steering flexibility.


Author(s):  
Sanjay Kumar Singh ◽  
Sanjay Kumar Sharma ◽  
Akhilesh Kumar Verma

Now a days most of the vehicles are use the two wheel steering system mechanism as their main handling system but, the efficiency of two wheel steering vehicle is proven to be low compared to all wheel steering vehicles. All wheel steering system can be employed in some vehicles to improve vehicle response, increase vehicle stability while moving at certain speed, or to decrease turning radius at low speed. All wheel steering is a technologically, tremendous effort on heavy loaded vehicles. Hence, there is a requirement of a mechanism which result in less turning radius and it can be achieved by implementing all wheel steering mechanism instead of regular two wheel steering.


2013 ◽  
Vol 655-657 ◽  
pp. 731-734
Author(s):  
Hu Dai Fu ◽  
Zheng Zhong Wang

It is studied that a great proportion of traffic problems lies in vehicles’ steering system, and the maximum steering angle decides their steering capability and their minimum turning radius. The measuring principle of rapid measuring system, and the automatic tracking principle of measurement system have been analyzed in the paper. Also, the infrared tracking, the measuring plate positioning, the calculation of minimum turning radius, and the processing method of the test results have been described in detail. It is proved that the automatic automobile steering angle detecting system has reached the general requirements both in detection resolution and the measuring accuracy.


2018 ◽  
Vol 4 (5) ◽  
pp. 7
Author(s):  
Shivam Dwivedi ◽  
Prof. Vikas Gupta

As the four-wheel steering (4WS) system has great potentials, many researchers' attention was attracted to this technique and active research was made. As a result, passenger cars equipped with 4WS systems were put on the market a few years ago. This report tries to identify the essential elements of the 4WS technology in terms of vehicle dynamics and control techniques. Based on the findings of this investigation, the report gives a mechanism of electronically controlling the steering system depending on the variable pressure applied on it. This enhances the controlling and smoothens the operation of steering mechanism.


Author(s):  
Violet Cunningham ◽  
Alexander Tilton ◽  
Dylon Maertens ◽  
Shawn Duan

Abstract People with disabilities often struggle with mobility issues, so there is a strong desire for devices such as powerchairs, which can provide more freedom. Currently, wheelchair demand in the US is increasing due to an upsurge in the elderly population. Often electric powerchairs suitable for outdoor use are extremely expensive, cannot be used indoors, and are not covered by medical insurance. In this project, these problems are addressed through the design of a chair which is suitable for both rough outdoor terrain and indoor use. This project is based on a request for a powerchair which our client’s son, who has cerebral palsy, can use on family trips in outdoor environments including grass, gravel, and sand. A photo of a previous nonfunctional prototype was provided to the team as a reference, and a full redesign was performed to resolve the problems identified. Before proceeding with the design, various sources were consulted to gain a thorough understanding of currently available technology and design methods. Many different adjustment methods and features were considered, including an adjustable frame, tracks, and a lifting system for curb mounting. The overall design selected is a welded sheet metal frame with wheels, and it was determined that the chair should have an adjustable wheelbase width to provide both outdoor stability and indoor maneuverability. Key considerations for the design include battery life, motor torque, maximum load, seat size, door width, and cost. The final specifications are based on the needs of the client, Kevin Sample, as well as an analysis of the wider consumer market. The width adjustment design uses an axle above the driving wheels, which are connected to it by sliding sleeves. Automatic adjustment is accomplished using a linear actuator. The drive wheels are large and run at low pressure to surmount obstacles and damp vibrations. Differential steering combined with rear caster wheels gives the chair a small turning radius, and its length is comparable to that of standard manual wheelchairs. The seat can be easily removed to access the battery and control system or to load the chair into a vehicle. A joystick is used to control the speed and direction of the chair, while a separate momentary switch is used for the linear actuator. Throughout the modeling process, stress analysis was performed using simulations in Inventor. Any necessary adjustments were made to ensure that none of the parts will fail, considering both failure theory and fatigue. Various grades of aluminum were selected for the majority of the manufactured parts, due to their corrosion resistance and light weight. The device is currently in the prototype manufacturing stage. If it is later marketed, a curb mounting device may also be included; this was decided against mainly due to cost and time restrictions. Space has also been left for a carrying basket, which will likely be added to the first prototype. The initial goal is to produce a single chair for our client, although the design may later be submitted for Medicare and ADA approval.


2012 ◽  
Vol 226-228 ◽  
pp. 1597-1603 ◽  
Author(s):  
Jian Guo Yin ◽  
Chu Han Deng ◽  
Yu Guang Fu ◽  
Liu Chi Li

Characterized by light weight and high strength, cold-drawn galvanized cable wires are widely applied in all kinds of prestressed structures and cable structures. Investigation shows that cables are sensitive to corrosion. Severe corrosion of cables results in cable replacement which are costly, and even more, collapse of the whole bridge. In this paper, several tests were carried out to present the crack growth of wire in stress corrosion in different solutions. In particular, as Cl-, OH-, SO42- and NH4+ have major effect on stress corrosion in seawater and acid rain, these four kinds of ions are selected in tests. And all four kinds of corrosive solutions are tested with the concentration of 1.5 bsp and 3 bsp respectively. Effects on ultimate tensile strength and sensitivity of cable wires are different for each of chosen ions, and the increasing concentration for the same solution would drop ultimate tensile strength and the modulus of cable wires.


Author(s):  
Arturo L. Rankin ◽  
Carl D. Crane

Abstract Efficient navigation of an autonomous mobile robot through a well-defined environment requires the ability of the robot to plan paths. An efficient and reliable planar off-line path planner has been developed that is based on the A* search method. Using this method, two types of planning are accomplished. The first uses a map of all known obstacles to determine the shortest-distance path from a start to goal configuration. The second determines the shortest path along a network of predefined roads. For the most complicated environment of obstacles and roads, a near-optimal piecewise-linear path is found within a few seconds. The planner can generate paths for robots capable of rotation about a point as well as car-like robots that have a minimum turning radius. For car-like robots, the planner can generate forward and reverse paths. This software is currently implemented on a computer controlled Kawasaki Mule 500 all-terrain vehicle and a computer controlled John Deere 690 excavator.


Author(s):  
Sreeharsha Rowduru ◽  
Niranjan Kumar ◽  
Ajit Kumar

This article presents a brief note on the evolution of steering mechanisms and more emphasized on articulated steering system of the load haul dump machine. In this respect, pictorial representation of the evolution of steering mechanisms for on-road and articulated steering mechanisms of the load haul dump machine is made from the available literature. Critical review on basic elements required for the complete automation of the load haul dump vehicle steering system is presented. Different types of controllers for path tracking error minimization of the scale-modeled or simulated model of the load haul dump steering system are tabulated. Few case studies stimulating the complete automation of the load haul dump steering system employed on the field are also discussed. Challenges and some research gaps in making fully automated steering system of the load haul dump machine are identified in this review article. At the end, based on the critical review, some novel methods for making the fully automated steering system of the load haul dump machine is provided, which is the potential future work for the design and development of feasible automatic steering system.


Sign in / Sign up

Export Citation Format

Share Document