scholarly journals Design and Implementation of Multilevel Inverter with Various MPPT Algorithms for Optimal Tracking of PV System

Author(s):  
Akash Gortyal

In this paper the different algorithm is performed in MATLAB Simulink to extract large amounts of energy from the pv system. MPPT algorithm is used to reduce complexity and to get better results, we used to perturb and observation, incremental conductance and fuzzy logic algorithm. A three-phase NPC inverter is used to connect the PV array with grid system, The PWM control method is used for the producing the PWM inverter signals. it contains PV array, dc / dc boost, three level NPC inverter. To get the synchronization between PV system and grid the synchronous reference frame theory with PLL block is used. The SRF theory will transform the three phase load currents (ia, ib, ic) to the two instantaneous active (id) and reactive (iq) components. The MATLAB simulation is preformed and we get a constant high output voltage from low input voltage and by changing the irradiance and temperature.

Author(s):  
G.Vijaykumar and Dr.V.Geetha

A high voltage gain modified SEPIC converter is proposed in this paper. This proposed converter has many advantages i.e., high output voltage, lower voltage stress, high efficiency, voltage gain is high without any coupled inductor and transformer, continuous input current. Thus, there is no overshoot voltage at turn-off process for switches. By using single switches, the CCM mode operation can be easily controlled by this converter, so control system is simple and also wide output values is obtained only by modifying the duty cycle. This modified converter has lower components than conventional converter. The operating modes and design of modified converter are discussed. The output power of this converter is 6 watts. By this converter, this converter capable of developing the two and half times of input voltage. The PV system also used this converter to develop high voltage gain. This high voltage gain is achieved by using MATLAB/SIMULIMK platform.


2018 ◽  
Vol 18 (1) ◽  
pp. 35 ◽  
Author(s):  
Rofiatul Izah ◽  
Subiyanto Subiyanto ◽  
Dhidik Prastiyanto

Synchronous Reference Frame Phase Locked Loop (SRF PLL) has been widely used for synchronization three-phase grid-connected photovoltaic (PV) system. On the grid fault, SRF PLL distorted by negative sequence component and grid harmonic that caused an error in estimating parameter because of ripple and oscillation. This work combined SRF PLL with Dual Second Order Generalized Integrator (DSOGI) and filter to minimize ripple and minimize oscillation in the phase estimation and frequency estimation. DSOGI was used for filtering and obtaining the 90o shifted versions from the vαβ signals. These signals (vαβ) were generated from three phase grid voltage signal using Clarke transform. The vαβ signal was the inputs to the positive-sequence calculator (PSC). The positive-sequence vαβ was transformed to the dq synchronous reference frame and became an input to SRF-PLL to create the estimation frequency. This estimation frequency from SRF PLL was filtered by the low-pass filter to decrease grid harmonic. Moreover, the output of low-pass filter was a frequency adaptive. The performance of DSOGI PLL with filter is compared with DSOGI PLL, SRF PLL, and IEEE standard 1547(TM)-2003. The improvement of DSOGI PLL with filter gave better performances than DSOGI PLL and SRF PLLbecause it minimized ripples and oscillations in the phase and frequency estimations.


2019 ◽  
Vol 8 (1) ◽  
pp. 1-9
Author(s):  
Swetapadma Panigrahi ◽  
Amarnath Thakur

In this paper a control scheme for three phase seven level cascaded H-bridge inverter for grid tied PV system is presented. As power generation from PV depends on varing environmental conditions, for extractraction of maximum power from PV array, fuzzy MPPT controller is incorporated with each PV array. It gives fast and accurate response. To maintain the grid current sinusoidal under varying conditions, a digital PI controller scheme is adopted. A MATLAB/Simulink model is developed for this purpose and results are presented. At last THD analysis is carried out in order to validate the performance of the overall system. As discussed, with this control strategy the balanced grid current is obtained keeping THD values with in the specified range of IEEE-519 standard.


Author(s):  
Touheed Khan ◽  
Mohammed Asim ◽  
Mohammad Saood Manzar ◽  
Md Ibrahim ◽  
Shaikh Sadaf Afzal Ahmed

<p><span lang="EN-US">This work proposes an adaptive filter based on a new least mean sixth control approach with incremental conductance method of MPP for 3-phase grid-incorporated photovoltaic (PV) system. The proposed system comprises a PV array, 3-phase DC to AC converter, maximum power point tracker (MPPT), three-phase electronic load, and a 3-phase grid. The combination of solar PV array and the voltage source converter (VSC) supplies power to the grid. The 3-phase inverter as a distribution static synchronous compensator (D-STATCOM) improves the quality of the system performance in case of zero solar irradiation. D-STATCOM also reduces total harmonic distortion (THD) in grid currents, improves power factor, and maintainsa constant voltage at the point of common coupling (PCC). The system modelling and simulation is achieved on MATLAB/Simulink. The proposed system performance has been found satisfactory and conform to IEEE-519 standards.</span></p>


2012 ◽  
Vol 591-593 ◽  
pp. 1531-1534 ◽  
Author(s):  
Jin Fang Zhang ◽  
En Li Yao ◽  
Jin Chao Xing

In the three-phase voltage-type pulse width modulation (PWM) inverter system, the steady DC-bus voltage is significant for normal operation of PWM converter. With traditional control method, DC-bus voltage has poor anti-disturbance performance and large steady-state error generated by parametric uncertainties of inductive resistance and switching devices’ equivalent resistance. To cope with these problems, a linear active disturbance rejection control (LADRC) controller is designed based on the advantages of the LADRC in processing system internal perturbation and external disturbance. The simulation study shows that under the same disturbance the proposed method can realize not only faster dynamic response and better property of anti-disturbance performance, but also unity power factor control. For the uncertainties of AC equivalent resistance and inductance, the method shows strong adaptability and robustness.


2020 ◽  
Vol 182 ◽  
pp. 02011
Author(s):  
WAN Qian ◽  
Xia Chengjun ◽  
Azeddine Houari ◽  
Zhao Xue ◽  
Xia Chengjun ◽  
...  

Renewable energy sources (RESs) generally connected with electric power system via power electronic interface. This paper presents a reactive power and voltage (Q/V) control strategy of three-phase photovoltaic (PV) system to offering reactive power based on the typical dual-loop control topology. It is worth mentioning that control strategy can support reactive power when a low voltage fault occurs in AC bus without additional compensation device. With the help of the decoupling control, the PV array can generate active power as much as possible in variable external solar radiation conditions. The voltage of PV arrays is adopted as the objective, which on account of the easy availability and controllability of voltage, to control output active power. Besides, accurately modeling process from a PV cell to PV array is described in the beginning to acquire the P-V and V-I characteristics of PV arrays, which promote the designment of Q/V control.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yongheng Yang ◽  
Frede Blaabjerg

The progressive growing of single-phase photovoltaic (PV) systems makes the Distribution System Operators (DSOs) update or revise the existing grid codes in order to guarantee the availability, quality, and reliability of the electrical system. It is expected that the future PV systems connected to the low-voltage grid will be more active with functionalities of low-voltage ride-through (LVRT) and the grid support capability, which is not the case today. In this paper, the operation principle is demonstrated for a single-phase grid-connected PV system in a low-voltage ride-through operation in order to map future challenges. The system is verified by simulations and experiments. Test results show that the proposed power control method is effective and the single-phase PV inverters connected to low-voltage networks are ready to provide grid support and ride-through voltage fault capability with a satisfactory performance based on the grid requirements for three-phase renewable energy systems.


2019 ◽  
Vol 115 ◽  
pp. 01006
Author(s):  
Amirreza Naderipour ◽  
Zulkurnain Abdul-Malek ◽  
Vigna K. Ramachandaramurthy ◽  
Josep. M. Guerrero

Microgrids (MGs) are developing owing to the rapidly growing distributed power generation systems. The MG controls the flexibility of the network to ensure the requirements of reliability and power quality are satisfied. A typical MG normally consists of dispersed generation resources, which are connected by power electronic inverters, storages, and non-linear loads. This study deals with a compensation control method of a photovoltaic grid-connected inverter using unity power factor (UPF) strategy in MG. In this case, the proposed control method can provide output currents without distortion and with the UPF. Further, it is able to increase the inverter output current to approximately 19 times of the value obtained conventionally. The proposed control method can be applied to three-phase grid interfaced converters such as DG inverters and can also be easily integrated into the conventional control scheme without installation of extra hardware. A theoretical analysis is presented and the performance of the proposed control method for a grid-connected inverter in a MG is evaluated through simulation results.


Sign in / Sign up

Export Citation Format

Share Document