scholarly journals Automatic Speed Reduction to Avoid Accidents

Author(s):  
V V R Murthy

Abstract: We analyse the automatic braking system to reduce the speed automatically to avoid the panic action of automobiles. Stop the vehicle when it is in the accidental zone, we applied the velocity calculation according to the weight of the body which can reach to required velocity state to avoid the accident. We are using the electromagnetic braking system to reduce the speed of vehicle it is about meet the accident. In this we achieve a better braking system and also it is relevant to future automobiles. The prototype has been prepared depicting the technology and tested as per the simulated conditions. In future the actual model may be developed depending on its feasibility

2015 ◽  
Vol 809-810 ◽  
pp. 1175-1180 ◽  
Author(s):  
Camil Ion Crăciun ◽  
Mădălina Dumitriu

The distribution and the size of longitudinal dynamic forces that develop in the train body found in braking system are influenced by the length of the train. To determine these forces, it is used a mechanical model consisting of rigid bodies, representing the train vehicles, connected by elastic and damping elements with the nonlinear characteristic that shapes the buffer and draw-gear. The results based on numerical simulations highlight the emergence of dynamic longitudinal forces during braking, their evolution over time and the distribution of maximum compression and stretching forces that develop in buffer and draw-gear devices, for different lengths of the passenger train.


Author(s):  
Mahdi Mosadegh ◽  
Mohammad M Jalili ◽  
Abbas Mazidi

Nowadays, vehicles have major role in the transportation of people and goods. The air pollution and fuel consumption are the most important topics in this subject. One of the methods used for reducing fuel consumption is regenerative braking systems. Very few researches have studied the effects of regenerative braking system on emission of hybrid vehicles. In this research, using bond graph method, a vehicle model including combustion, heat transfer, power generation, power transmission, braking, energy storage system and vehicle body is simulated. To determine the amount of pollution generation, an incomplete combustion model and complete gas theory are assumed and Arrhenius equation is used for modelling the combustion reaction velocity. This model can determine fuel consumption in any actual operating condition and also all pollutions generated by incomplete combustion in the engine. This is the preference of this research while most of previous researches using engine fuel map to determine fuel consumption and unable to define all kind of pollutions. The body of the vehicle is modelled with seven degrees of freedom mass-spring-damper model. Also, the hydraulic braking system is modelled by acting braking torque on wheels. Using this vehicle model and its parameters, amount of energy consumption and emission of the vehicle equipped with regenerative braking system are achieved and compared with the results of the same vehicle without regenerative braking system. Simulations are performed on two standard Economic Commission for Europe and extra urban driving cycles to determine regenerative braking system operation effects on reducing fuel consumption and emission in each cycle. Results show that a vehicle with this equipment is capable of reducing fuel consumption and emission in comparing with an unequipped vehicle. Using regenerative braking system in Economic Commission for Europe cycle, in comparing with extra urban driving cycle, is more efficient in reducing emission and fuel consumption. According to the results, regenerative braking system makes more deceleration than Hydraulic Braking System in high speeds.


2020 ◽  
Vol 43 ◽  
Author(s):  
David Spurrett

Abstract Comprehensive accounts of resource-rational attempts to maximise utility shouldn't ignore the demands of constructing utility representations. This can be onerous when, as in humans, there are many rewarding modalities. Another thing best not ignored is the processing demands of making functional activity out of the many degrees of freedom of a body. The target article is almost silent on both.


Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Author(s):  
J. J. Paulin

Movement in epimastigote and trypomastigote stages of trypanosomes is accomplished by planar sinusoidal beating of the anteriorly directed flagellum and associated undulating membrane. The flagellum emerges from a bottle-shaped depression, the flagellar pocket, opening on the lateral surface of the cell. The limiting cell membrane envelopes not only the body of the trypanosome but is continuous with and insheathes the flagellar axoneme forming the undulating membrane. In some species a paraxial rod parallels the axoneme from its point of emergence at the flagellar pocket and is an integral component of the undulating membrane. A portion of the flagellum may extend beyond the anterior apex of the cell as a free flagellum; the length is variable in different species of trypanosomes.


Author(s):  
C.D. Fermin ◽  
M. Igarashi

Otoconia are microscopic geometric structures that cover the sensory epithelia of the utricle and saccule (gravitational receptors) of mammals, and the lagena macula of birds. The importance of otoconia for maintanance of the body balance is evidenced by the abnormal behavior of species with genetic defects of otolith. Although a few reports have dealt with otoconia formation, some basic questions remain unanswered. The chick embryo is desirable for studying otoconial formation because its inner ear structures are easily accessible, and its gestational period is short (21 days of incubation).The results described here are part of an intensive study intended to examine the morphogenesis of the otoconia in the chick embryo (Gallus- domesticus) inner ear. We used chick embryos from the 4th day of incubation until hatching, and examined the specimens with light (LM) and transmission electron microscopy (TEM). The embryos were decapitated, and fixed by immersion with 3% cold glutaraldehyde. The ears and their parts were dissected out under the microscope; no decalcification was used. For LM, the ears were embedded in JB-4 plastic, cut serially at 5 micra and stained with 0.2% toluidine blue and 0.1% basic fuchsin in 25% alcohol.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


Author(s):  
Roy Skidmore

The long-necked secretory cells in Onchidoris muricata are distributed in the anterior sole of the foot. These cells are interspersed among ciliated columnar and conical cells as well as short-necked secretory gland cells. The long-necked cells contribute a significant amount of mucoid materials to the slime on which the nudibranch travels. The body of these cells is found in the subepidermal tissues. A long process extends across the basal lamina and in between cells of the epidermis to the surface of the foot. The secretory granules travel along the process and their contents are expelled by exocytosis at the foot surface.The contents of the cell body include the nucleus, some endoplasmic reticulum, and an extensive Golgi body with large numbers of secretory vesicles (Fig. 1). The secretory vesicles are membrane bound and contain a fibrillar matrix. At high magnification the similarity of the contents in the Golgi saccules and the secretory vesicles becomes apparent (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document