scholarly journals Seismic Analysis of Lightweight and Conventional Buildings: A Comparative Study

Author(s):  
Mr. Rajesh Kumar Yadav

Abstract: In recent decades, the use of light-weight materials over heavy-weight materials has increased at a faster rate. When it comes to cost and resource savings, lightweight construction is considered to be more essential. AAC block is a lightweight construction material that provides good acoustic and thermal insulation. In seismic zones, the use of lightweight materials in building reduces the percentage of damages. The goal of this research is to conduct a project comparison study of seismic analysis of buildings composed of lightweight and conventional materials. RSM creates a structural model of a multi-story structure (G+3) and analyses it in Etabs (Response Spectrum Method). Buildings constructed using infill AAC (Autoclaved aerated concrete) blocks and traditional clay brick masonry are designed for the same seismic hazard in conformity with Indian norms. The buildings' analytical results will be compared. The project also aims to familiarise students with Etabs2016. Keywords: Autoclaved Aerated Concrete, Conventional Brick Replacement, Lightweight Construction, Lightweight Material.

Author(s):  
Sangju Lee ◽  
Eberhard Bamberg ◽  
Charles Eason

This paper reports on the machining of a construction material (aerated concrete) with a rapid prototyping device, Shapemaker III, which is based on waterjet technology. Preliminary machining tests were carried out to investigate machining conditions (speed and pressure) of separation cuts. Cutting speeds for the waterjet were investigated for two aerated concrete construction materials; autoclaved aerated concrete (AAC) in two strengths (348 and 580 psi compressive strength) and a non-autoclaved, fiber reinforced aerated concrete (FRAC) with a 450 psi compressive strength. Cutting samples were prepared in four thicknesses (0.5, 1, 2, and 3 inches) and cut at two pressures (40 and 60 ksi). The 0.5 and 1 inch specimens were cut with good surface finish at over 600 in/min at 40 ksi. The 2 and 3 inch specimens could be cut at 320 and 80 in/min at 40 ksi, respectively. The experimental data was used in the fabrication of rapid prototyping houses with a pure waterjet machine. As results, full scale houses were fabricated with FRAC and Styrofoam. Additionally, a sub-mold of an outdoor fireplace was manufactured with Styrofoam for casting of customized aerated concrete blocks.


Author(s):  
Василий Алексеенко ◽  
Vasiliy Alekseenko ◽  
Оксана Жиленко ◽  
Oksana Zhilenko

The manual outlines the basic principles of design of low-rise buildings with walls of autoclaved aerated concrete blocks. Variants of design of low-rise buildings, selection of the main bearing and protecting designs and their connections are considered. The main purpose-to acquaint students and technical workers with the principles of design of buildings with walls of autoclaved aerated concrete blocks, realizing the advantages of autoclaved cellular concretes. Meets the requirements of the Federal state educational standards of higher education of the last generation. For full-time and part-time students of the direction of training "Construction".


2019 ◽  
Vol 974 ◽  
pp. 665-671
Author(s):  
Omar Ismael Alhashimi ◽  
AL-Hasnawi Yasser Sami Ghareb

Many of the complex reinforced Autoclaved Aerated Concrete characteristics under shear and flexure are yet to be identified to employ this material advantageously and economically, as it has many advantages of low weight, fire resistance, acoustic and thermal insulation. It is observed in the article that under two-points loading system, diagonal cracks are usually the first cracks to be observed in the deep beam clear span. The diagonal cracks first are developed in relatively deep beams and the flexural cracks are first developed in shallower beam. The principal mode of failure in the deep beams having adequate reinforcement is diagonal tension cracking. The shear failure is a common type for all beams. This indicates a weak the bond strength between lightweight concrete and reinforcing steel. There are many factors affecting the bond strength between the lightweight concrete and reinforcing steel, where the compressive strength plays an important role in bond strength, and the bond strength is increased by increasing the compressive strength. The AAC beams have the potential to be an excellently energy-saving construction material and is believed to emerge as an alternative to traditional reinforced concrete beam in the near future. This is proved by the experimental analysis.


2014 ◽  
Vol 633-634 ◽  
pp. 897-903 ◽  
Author(s):  
Alexander S. Gorshkov ◽  
Nikolai Vatin ◽  
Darya Nemova ◽  
Darya Tarasova

In article work of a fragment of a wall design from blocks from autoclaved aerated concrete (AAC) is considered at its floor-by-floor leaning on monolithic overlapping of the building with a monolithic ferroconcrete framework and conditions of ensuring stability (not losses) a considered fragment within one floor at action on it the overturning moment from wind loading.


2020 ◽  
Vol 8 (6) ◽  
pp. 3508-3513

Autoclaved aerated concrete (AAC) blocks are the lightweight and green concrete blocks that are composed of cement, fly ash, lime, gypsum and aluminium powder. Depending on its density AAC consists of up to 80% of air by volume. Due to their low density and lightweight Autoclaved aerated concrete blocks exhibit so many favourable physical properties that these have got attention from all around the globe. Due to these enhanced properties Autoclaved aerated concrete blocks are extensively used as masonry units in all types of construction. On one hand AAC blocks have no comparison with other types of masonry units in terms of physical properties but on other hand AAC blocks are found to have low compressive strength relatively. In this study an attempt has been made to study the influence of Alkali-Resistant Glass Fibre additive on the physical and mechanical properties of Autoclaved aerated concrete blocks. Four sets of samples were cast and named as A, B, C and D with the fibre additive contents as 0%, 0.1%, 0.2% and 0.3% respectively (by dry weight of all the ingredients).Each sample set consisted of three specimens and the average value of the three samples were taken. For example, the average value of the three specimens- A1 , A2 , and A3 was taken as A and so on. Fibre additive influenced the aeration process of Autoclaved aerated concrete by increasing the rising/aeration time by 8%. The investigated fibre additive increases the compressive strength by 0%, 10%, 24% and 13.8% respectively to the added fibre contents of 0%, 0.1%, 0.2%, and 0.3% respectively. The optimal content of Alkali-Resistant Glass Fibre additive to be added for obtaining the highest compressive strength is 0.2%. Further investigations have shown a slight variation in density (about 0.2%) between the normal and modified Autoclaved aerated concrete blocks.


2021 ◽  
Vol 889 (1) ◽  
pp. 012061
Author(s):  
Rahul kumar ◽  
Ankur Thakur ◽  
Aditya Kumar Tiwary

Abstract In India, traditional clay brick is the most common filler material used in building. The materials used in construction have a significant influence on both the constructed environment and the project’s ultimate cost. Autoclaved Aerated Concrete (AAC) has recently emerged as a viable alternative to clay and fly ash bricks. In this work, a comparison of clay bricks and AAC blocks is explored. Although AAC blocks have been utilised in building since 1924, they now account for just 16-18% of all construction in India. AAC blocks have desirable mechanical qualities in proportion to their low bulk density, improved thermal and acoustic properties, light weight, and ease of installation, making them an obvious alternative to replace traditional clay bricks. The purpose of this study is to demonstrate the potential of AAC blocks as an infill material to replace clay bricks and to encourage its usage in construction to create more energy efficient and sustainable structures. AAC blocks’ potential as an infill material in hilly areas is discussed.


Sign in / Sign up

Export Citation Format

Share Document