scholarly journals Measuring Feed Force in Machining Using a Strain Gage

Author(s):  
Salman Al Farisi Siregar ◽  
Agus Triono ◽  
Mahros Darsin ◽  
Santoso Mulyadi

   Measuring the forces that work during machining has been being concerned by researchers for years. There are three main forces that work in turning: thrust  force, axial force, and radial force. Thus, feeding force measurement is needed in machine manufacturing. This research attempts to develop measurement method through feeding force, using strain gauge sensor. The aim of measurement of feeding force in this research is to find out the influence parameter of machine towards feeding force. The research used experimental method with design experiment Taguchi to know the influence of machine parameters to feeding force in turning process. The measurement tool is strain gauge sensor connected to cutting tool. The workspace is alluminium 6061 with 15 mm in diameter and 150 mm in length. The  parameters for this research are speed rate (140 rpm, 215 rpm, and 330 rpm), feed rate (0,043 mm/r , 0,065 mm/r , and 0,081 mm/r), and depth of cut (0,2 mm, 0,4 mm, and 0,6 mm). The result showed that speed rate is the most significant parameter, with the contribution percentage is 92 %. Speed rate and feed rate parameter have insignificant influence. The contribution percentage of speed rate is 2% while the feed rate has % contribution percentage. The conclusion of the research is that the bigger number of speed rate, the bigger feeding force it will have. 

2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Krishna Kumar M ◽  
Sangaravadivel P

The measurement of cutting forces in metal cutting is essential to estimate the power requirements, to design the cutting tool and to analyze machining process for different work and tool material combination. Although cutting forces can be measured by different methods, the measurement of cutting forces by a suitable dynamometer is widely used in industrial practice. Mechanical and strain gauge dynamometer are most widely used for measuring forces in metal cutting. The principle of all dynamometers is based on the measurement of deflections or strain produced from the dynamometer structure from the action of cutting force. In this project, a dynamometer is used to measure cutting force, feed force and radial force by using strain gauge accelerometer while turning different material in lathe. The dynamometer is a 500kg force 3- component system. As the tool comes in contact with the work piece the various forces developed are captured and transformed into numerical form system. In this project three forces of different materials such as aluminum, mild steel, brass, copper have been noted down. The forces on these materials with variation in speed and depth of cut are studied. Graphs are drawn on how these forces vary due to variation in speed.


2021 ◽  
Vol 24 (2) ◽  
pp. 5-8
Author(s):  
Anđelko Aleksić ◽  
◽  
Milenko Sekulić ◽  
Marin Gostimirović ◽  
Dragan Rodić ◽  
...  

The objective of this paper is to investigate the effect of cutting parameters on cutting forces during turning of CPM 10V steel with coated cutting tool. Machining of CPM 10V steel and finding a suitable tool is very challenging due to its physical and mechanical properties, especially since the machining of this material has not been extensively researched. The experiments were carried out using an Index GU -600 CNC lathe and the cutting forces were measured in process. A three-factorial three-level experimental design was used for the experiments. Statistical method analysis of variance (ANOVA) is applied to study the effects of cutting speed, feed rate, and depth of cut on cutting forces. The results of this study show that depth of cut has the most significant effect on main force and radial force, while feed rate and cutting speed have the most significant effect on feed force. The developed model can be used in the machining industry to predict and analyze cutting parameters for optimal cutting forces.


Mechanika ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Mustafa ÖZDEMİR ◽  
Mehmet Tuncay KAYA ◽  
Hamza Kemal AKYILDIZ

In this study, effects of cutting speed (V), feed rate (f), depth of cut (a) and tool tip radius (R) on  surface roughness (Ra, Rz, and Rt) and cutting forces (radial force (Fx), tangential force (Fy), and feed force (Fz)) in hard finish turning processes of hardened 42CrMo4 (52 HRC) material was investigated experimentally. Taguchi’s mixed level parameter design (L18) is used for the experimental design (2x1,3x3). The signal-to-noise ratio (S/N) was used in the evaluation of test results.  By using Taguchi method, cutting parameters giving optimum surface roughness and cutting forces were determined. Regression analyses are applied to predict surface roughness and cutting forces. Analysis of variance (ANOVA) is used to determine the effects of the machining parameters on surface roughness and cutting forces. According to ANOVA analysis, the most important cutting parameters were found to be feed rate for surface roughness and depth of cut among cutting forces.  By conducting validation experiments, optimization was seen to be applied successfully.


Author(s):  
Nilrudra Mandal ◽  
B Doloi ◽  
Biswanath Mondal ◽  
BK Singh

An attempt has been made to apply the Taguchi parameter design method and multi-response optimization using desirability analysis for optimizing the cutting conditions (cutting speed, feed rate and depth of cut) on machining forces while finish turning of AISI 4340 steel using developed yttria based zirconia toughened alumina inserts. These zirconia toughened alumina inserts were prepared through wet chemical co-precipitation route followed by powder metallurgy process. The L9 (4) orthogonal array of the Taguchi experiment is selected for three major parameters, and based on the mean response and signal-to-noise ratio of measured machining forces, the optimal cutting condition arrived for feed force is A1, B1 and C3 (cutting speed: 150 m/min, depth of cut: 0.5 mm and feed rate: 0.28 mm/rev) and for thrust and cutting forces is A3, B1 and C1 (cutting speed: 350 m/min, depth of cut: 0.5 mm and feed rate: 0.18 mm/rev) considering the smaller-the-better approach. Multi-response optimization using desirability function has been applied to minimize each response, that is, machining forces, simultaneously by setting a goal of highest cutting speed and feed rate criteria. From this study, it can be concluded that the optimum parameters can be set at cutting speed of 350 m/min, depth of cut of 0.5 mm and feed rate of 0.25 mm/rev for minimizing the forces with 78% desirability level.


2021 ◽  
Vol 27 (4) ◽  
pp. 296-305
Author(s):  
Arpit Srivastava ◽  
Mukesh Kumar Verma ◽  
Ramendra Singh Niranjan ◽  
Abhishek Chandra ◽  
Praveen Bhai Patel

Abstract Aluminum alloy 7075-T651 is a widely used material in the aviation, marine, and automobile sectors. The wide application marks the importance of this material’s research in the manufacturing field. This research focuses on optimizing input process parameters of the turning process in the machining of Aluminum 7075-T651 with a tungsten carbide insert. The input machining parameters are cutting speed, feed, and depth of cut for the output response parameters cutting force, feed force, radial force, material removal, and surface roughness of the workpiece. For optimization of process parameters, the Taguchi method, with standard L9 orthogonal array, is used. ANOVA is applied to obtain signifi-cant factors and optimal combinations of process parameters.


2018 ◽  
Vol 14 (1) ◽  
pp. 67-76
Author(s):  
Mohanned Mohammed H. AL-Khafaji

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).


2014 ◽  
Vol 592-594 ◽  
pp. 668-672
Author(s):  
Praveen Kumar ◽  
Hari Singh

The objective of the paper is to obtain an optimal setting of turning process parameters (cutting speed, depth of cut and feed rate) resulting in an optimal value of the feed force when machining En19 steel with tungsten carbide cutting tool inserts. The effects of the selected turning process parameters on feed force and the subsequent optimal settings of the parameters have been accomplished using Taguchi’s parameter design approach. It was indicated by the results that the selected turning process parameters significantly affect the selected machining characteristic. The percent contributions of parameters as quantified in the S/N ANOVA envisage that the relative power of cutting speed (72.09 %) in controlling variation and mean feed force is significantly higher than that of the depth of cut (22.30 %) and feed rate (05.31 %). The predicted optimum feed force is 98.067 N. The results have been validated by the confirmation experiments.


2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Jaharah A. Ghani ◽  
Poh Siang Jye ◽  
Che Hassan Che Haron ◽  
Muhammad Rizal ◽  
Mohd Zaki Nuawi

Turning process is widely used in the production of components for automotive and aerospace applications. The machinability of a work material is commonly assessed in terms of cutting tool life, surface finish, and cutting force. These responses are dependent on machining parameters such as cutting speed, feed rate, and depth of cut. In this study, the relationships between cutting force, cutting speed, and sensor location in the turning process were investigated. Strain gauge was chosen as the sensor for the detection of cutting force signal during turning of hardened plain carbon steel JIS S45C. Two strain gauges were mounted on a tool holder at a defined location of I, II, or III at a distance of 37, 42, or 47 mm, respectively, from the cutting point. Only one set of machining experiments was conducted at spindle speed = 1000 rpm, feed = 0.25 mm/rev, and depth of cut = 0.80 mm. The turning process was stopped and the insert was discarded when average flank wear reached 0.30 mm. The main cutting force and the feed force for each cycle measured by the strain gauges at location I, II, and III were collected and analyzed. Results show that when cutting speed was increased, the main cutting force and the feed force were decreased accordingly. The change of was inversely proportional to the change of cutting speed, but the did not decrease continuously and behaved contrarily. A strain gauge placed at a distance of approximately 43 mm from the cutting point was found to be the best and most suitable for sensing accurate force signals.


The article presents the research results referring to the analysis of the influence of cuttingparameters on value of cutting forces during turning pins of shaft. For the monitoring of forces during lathingprocess used Kistler dynamometer. The dynamometer is used for dynamic and quasistatic measurements of the3 orthogonal components of any forces acting on the cover plate (Fx - radial force, Fy - feed force andFz - cutting force). The turning process was carried out on a universal CU500MRD/1000 centre lathe. Theresearch was performed on a shaft made of 7020 aluminium alloy. Chemical composition of aluminium alloywas measured by Solaris-ccd plus optical spectrometer. The finishing turning process was carried out by cuttingtool with CCGT09T302-DL removable insert by Duracarb. During turning the following machining parameterswere used: cutting speed, feed and depth of cut. The goal of the paper was to define the influence of treatmentconditions on values of forces during turning process, and thus monitoring the wear of the cutting insert.


2021 ◽  
Vol 12 (2) ◽  
pp. 401-409
Author(s):  
Rika Dwi Hidayatul Qoryah ◽  
◽  
Herninda Ayu Meylinda Sari ◽  
Mahros Darsin ◽  
Santoso Mulyadi

The cutting force that reacts to cutting tool and workpieces will result deflection. Deflection is the cause of product deviation and vibration sources that can shorten the life of the cutting tool. Simulation of machining process is carried out to get an estimate of cutting force in some machining process conditions., then compare it to the experiments. The research aims to find out the influence of spindle rotary speed, feed rate and depth of cut on cutting forces in turning process with cutting tool HSS and workpiece Al 6061. This research uses three-dimensional simulation method using Third Wave AdvantEdge software. Following by comparison between the simulation with the experiments results. The simulation was in accordance to the experiments in term of the magnitude of the forces, from the biggest they are tangential, axial, and radial force respectively. Cutting force will decrease with increased spindle turning speed. Cutting force will increase with the rising feed rate and depth of cut. However, the simalution still highly deviate from the experiments at the rate of 71%, 44.3%, and 21.3% for axial, radial and tangential forces respectively. The possible cause of these high errors relates to forces measuring method in experiments.


Sign in / Sign up

Export Citation Format

Share Document