scholarly journals Simulasi Gaya Pemotongan pada Proses Bubut dengan Software Third Wave Advantedge

2021 ◽  
Vol 12 (2) ◽  
pp. 401-409
Author(s):  
Rika Dwi Hidayatul Qoryah ◽  
◽  
Herninda Ayu Meylinda Sari ◽  
Mahros Darsin ◽  
Santoso Mulyadi

The cutting force that reacts to cutting tool and workpieces will result deflection. Deflection is the cause of product deviation and vibration sources that can shorten the life of the cutting tool. Simulation of machining process is carried out to get an estimate of cutting force in some machining process conditions., then compare it to the experiments. The research aims to find out the influence of spindle rotary speed, feed rate and depth of cut on cutting forces in turning process with cutting tool HSS and workpiece Al 6061. This research uses three-dimensional simulation method using Third Wave AdvantEdge software. Following by comparison between the simulation with the experiments results. The simulation was in accordance to the experiments in term of the magnitude of the forces, from the biggest they are tangential, axial, and radial force respectively. Cutting force will decrease with increased spindle turning speed. Cutting force will increase with the rising feed rate and depth of cut. However, the simalution still highly deviate from the experiments at the rate of 71%, 44.3%, and 21.3% for axial, radial and tangential forces respectively. The possible cause of these high errors relates to forces measuring method in experiments.

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Rashid Ali Laghari ◽  
Jianguang Li ◽  
Mozammel Mia

Cutting force in the machining process of SiCp/Al particle reinforced metal matrix composite is affected by several factors. Obtaining an effective mathematical model for the cutting force is challenging. In that respect, the second-order model of cutting force has been established by response surface methodology (RSM) in this study, with different cutting parameters, such as cutting speed, feed rate, and depth of cut. The optimized mathematical model has been developed to analyze the effect of actual processing conditions on the generation of cutting force for the turning process of SiCp/Al composite. The results show that the predicted parameters by the RSM are in close agreement with experimental results with minimal error percentage. Quantitative evaluation by using analysis of variance (ANOVA), main effects plot, interactive effect, residual analysis, and optimization of cutting forces using the desirability function was performed. It has been found that the higher depth of cut, followed by feed rate, increases the cutting force. Higher cutting speed shows a positive response by reducing the cutting force. The predicted and experimental results for the model of SiCp/Al components have been compared to the cutting force of SiCp/Al 45 wt%—the error has been found low showing a good agreement.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Rashid Ali Laghari ◽  
Jianguang Li

Abstract In this study, the proposed experimental and second-order model for the cutting forces were developed through several parameters, including cutting speed, feed rate, depth of cut, and two varying content of SiCp. Cutting force model was developed and optimized through RSM and compared for two different percentages of components SiCp/Al 45% and SiCp/Al 50%. ANOVA is used for Quantitative evaluation, the main effects plot along with the evaluation using different graphs and plots including residual analysis, contour plots, and desirability functions for cutting forces optimization. It provides the finding for choosing proper parameters for the machining process. The plots show that during increment with depth of cut in proportion with feed rate are able to cause increments in cutting forces. Higher cutting speed shows a positive response in both the weight percentage of SiCp by reducing the cutting force because of higher cutting speed increases. A very fractional increasing trend of cutting force was observed with increasing SiCp weight percentages. Both of the methods such as experiment and model-predicted results of SiCp/Al MMC materials were thoroughly evaluated for analyzing cutting forces of SiCp/Al 45%, and SiCp/Al 50%, as well as calculated the error percentages also found in an acceptable range with minimal error percentages. Article Highlights This study focuses on the effect of cutting parameters as well as different percentage of SiC particles on the cutting forces, while comparing the results of both SiC particles such as SiCp/Al 45%, and SiCp/Al 50% the result shows that there isn’t fractional amount of impact on the cutting force with nominal increasing percentages of SiC particles. Cutting speed in machining process of SiCp/Al shows positive response in reducing the cutting forces, however, increasing amount of depth of cut followed by increasing feed rate creates fluctuations in cutting force and thus increases the cutting force in the cutting process. The developed RSM mathematical model which is based on the box Behnken design show excellent competence for predicting and suggesting the machining parameters for both SiCp/Al 45%, and SiCp/Al 50% and the RSM mathematical model is feasible for optimization of the machining process with good agreement to experimental values.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Krishna Kumar M ◽  
Sangaravadivel P

The measurement of cutting forces in metal cutting is essential to estimate the power requirements, to design the cutting tool and to analyze machining process for different work and tool material combination. Although cutting forces can be measured by different methods, the measurement of cutting forces by a suitable dynamometer is widely used in industrial practice. Mechanical and strain gauge dynamometer are most widely used for measuring forces in metal cutting. The principle of all dynamometers is based on the measurement of deflections or strain produced from the dynamometer structure from the action of cutting force. In this project, a dynamometer is used to measure cutting force, feed force and radial force by using strain gauge accelerometer while turning different material in lathe. The dynamometer is a 500kg force 3- component system. As the tool comes in contact with the work piece the various forces developed are captured and transformed into numerical form system. In this project three forces of different materials such as aluminum, mild steel, brass, copper have been noted down. The forces on these materials with variation in speed and depth of cut are studied. Graphs are drawn on how these forces vary due to variation in speed.


INSIST ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 54
Author(s):  
Gusri Akhyar ◽  
Suryadiwansa Harun ◽  
Arinal Hamni

Abstract - Magnesium and magnesium alloys is one of materials that worldwide used on automotive components due to very good  strength to weight ratio, resistant to corrosion, lighter compare to steel materials. Other than that magnesium has an advantage in easy to form and good machinability.  Nevertheless, magnesium known as metal which is easy to burned because of magnesium has low melting point. To maintain magnesium from burning quickly when proses machining, it needs to use coolant or lubricant to reduce temperature. Using of coolant when machining process can reduce temperature on cutting tool and work piece material, while using of lubricant can reduce friction between the cutting tool and work piece mateial. However, using of coolant and lubricant can harm for the environment and also coolant difficult to destroyed. Therefore, an alternative method to reduce the temperature when machining of magnesium alloy is using  the rotary cutting tool system. In the rotary cutting tool system, the cutting tool has a time to experience cooling in the period time. Other than aspect of temperature, surface roughness values are representative of surface of quality of produced componens. In this research, surface roughness value of magnesium alloy of AZ31 observed in ranges of work piece cutting speed of  (Vw) 25, 50, 120, 160, 200 m/min, rotary cutting speed of (Vt) 25, 50, 75 m/min, feed rate of (f) 0,05  and 0,10 mm/rev, and depth of cut of 0.2 mm. The turning process was done by using two kinds of diameter of rotary cutting tools are 16 and 20 mm, and without applying of coolant. The results of the research showed that the minimum surface roughness value of machined surface was 0,62𝝻m by using insert with diameter of 16 mm, while the maximum surface roughness value of machined surface was 2,86 𝝻m by using insert with diameter of 20 mm. This result stated that the increase in the diameter of rotary cutting tool gives a significant effect on the produced surface roughness value. Factor of feed rate also gives a significant contribution on the surface roughness value of machined magnesium surface.  The increase in feed rate generated significantly surface roughness value as long as the trials experiments. The produced surface roughness values inversely proportional to the cutting speed of rotary cutting tool.Keywords - magnesium, rotary tool, surface roughness, turning. 


2010 ◽  
Vol 431-432 ◽  
pp. 365-368
Author(s):  
Wen Zhuang Lu ◽  
Dun Wen Zuo ◽  
B. Yang ◽  
Feng Xu ◽  
M. Wang

The performance of CVD diamond coated cemented carbide cutting tool in comparison with K10 uncoated cemented carbide tool in the dry turning of Al-20wt%Si aluminum-silicon hypereutectic alloy was investigated. The obtained results showed a better cutting performance for CVD diamond coated tool in machining Al-20wt%Si, particularly in terms of cutting force, tool wear, surface roughness, when compared with K10. The cutting forces are lower with CVD diamond coated tool and the depth of cut promotes a great increment of the cutting force. The tool wear processes taking place in the tool tips in all cutting conditions. The tool life of CVD diamond coated tool is longer than that of the uncoated K10. The surface roughness Ra increases obviously with the increase of feed rate using a CVD diamond coated cutting tool. A higher feed rate produces surface rougher. The chip morphology in machining of Al-20wt%Si alloy by CVD diamond coated tool is continuous. The tests showed that the CVD diamond coated tool can be applied on the K10 tool at low feed rate to produce high quality surfaces.


2013 ◽  
Vol 4 (2) ◽  
pp. 79-95 ◽  
Author(s):  
Nirmal S. Kalsi ◽  
Rakesh Sehgal ◽  
Vishal S. Sharma

In the present experimental study, Taguchi method and the GRA (grey relation analysis) technique were used to optimize a multi-objective metal cutting process to yield maximum performance of tungsten carbide-cobalt cutting tool inserts in turning. L18 orthogonal array was selected to analyze the effect of cutting speed, feed rate and depth of cut using cryogenically treated and untreated inserts. The performance was evaluated in terms of main cutting force, power consumption, tool wear and material removal rate using main effect plots of S/N (signal to noise) ratios. This study indicated that grey based Taguchi technique is not only a novel, efficient and reliable method of optimization, but also contributes to satisfactory solution for multi machining objectives in turning process. It is concluded that cryogenic treated cutting tool inserts performed better. However, the feed rate affected the process performance most significantly.


2021 ◽  
pp. 089270572199320
Author(s):  
Prakhar Kumar Kharwar ◽  
Rajesh Kumar Verma

The new era of engineering society focuses on the utilization of the potential advantage of carbon nanomaterials. The machinability facets of nanocarbon materials are passing through an initial stage. This article emphasizes the machinability evaluation and optimization of Milling performances, namely Surface roughness (Ra), Cutting force (Fc), and Material removal rate (MRR) using a recently developed Grey wolf optimization algorithm (GWOA). The Taguchi theory-based L27 orthogonal array (OA) was employed for the Machining (Milling) of polymer nanocomposites reinforced by Multiwall carbon nanotube (MWCNT). The second-order polynomial equation was intended for the analysis of the model. These mathematical models were used as a fitness function in the GWOA to predict machining performances. The ANOVA outcomes efficiently explore the impact of machine parameters on Milling characteristics. The optimal combination for lower surface roughness value is 1.5 MWCNT wt.%, 1500 rpm of spindle speed, 50 mm/min of feed rate, and 3 mm depth of cut. For lower cutting force, 1.0 wt.%, 1500 rpm, 90 mm/min feed rate and 1 mm depth of cut and the maximize MRR was acquired at 0.5 wt.%, 500 rpm, 150 mm/min feed rate and 3 mm depth of cut. The deviation of the predicted value from the experimental value of Ra, Fc, and MRR are found as 2.5, 6.5 and 5.9%, respectively. The convergence plot of all Milling characteristics suggests the application potential of the GWO algorithm for quality improvement in a manufacturing environment.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


Sign in / Sign up

Export Citation Format

Share Document