scholarly journals PENGARUH PEMBERIAN JUMLAH DAN RASIO (L/d) SERAT BENDRAT TERHADAP SIFAT MEKANIK BETON

2015 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Ahmad Hafiz S.G ◽  
Erwin Rommel ◽  
Lukito Prasetyo

PENGARUH PEMBERIAN JUMLAH DAN RASIO (L/d) SERAT BENDRAT TERHADAP SIFAT MEKANIK BETONThe Influence of Steel Fiber Amount And L/D ratio to Mechanical Properties of ConcreteAhmad Hafiz S.G1, Erwin Rommel2, Lukito Prasetyo31 Staf Badan Perencana dan Pengembangan Kampus UMM2,3 Jurusan Teknik Sipil Universitas Muhammadiyah MalangAlamat korespondensi : email: [email protected], [email protected], [email protected] concrete is the concrete which is mixed with fiber. The fiber was mixed into the concrete with the addition of fiber percentage. In this research, the fiber used was bendrat fiber. It had a diameter 0.8 mm which was cut be 1 cm, 2 cm, and 3 cm. Thus, the ratio (l/d) of fiber bendrat got 12,5 ; 25; and 37,5. Moreover, the amount of additional fiber used was 1 %, 2 % and 3 % from the amount of each cement ratio.In this research made 60 test concrete cylinder (150x300) mm in each of the 30 cylinder for testing compressive and 30 cylinders for testing tensile of the concrete. As for testing shear strength made 30 concrete specimen the shaped doubel-L (200x300x75) mm.The research results obtained that the wearing of a fiber ratio L/d = 12.5 will be able to enhance the tensile strength and shear stregth of concrete where fiber consumption bendrat as much as 3% obtained the greatest tensile strength 2,41 MPa or increased twice from the concrete without fibres, while for maximum shear strength reach 4,94 MPa with an increase of 54% compared to concrete without fibresKeywords: fiber concrete, steel fiber, tensile strength, shear strengthAbstrakBeton serat adalah bahan beton yang dicampur dengan serat dengan persentase tertentu. Dalam penelitian ini,serat yang digunakan adalah serat bendrat. Serat bendrat berdiamtere 0,8 mm dipotong-potong dengan panjang 1 cm, 2 cm dan 3 cm sehingga menghasilkan rasio L/d masing-masing 12,5; 25; dan 37,5. Sedangkan banyaknya serat yang ditambahkan terhadap volume berat yang digunakan masing-masing ; 1%, 2% dan 3%. Dalam penelitian dibuat 60 silinder diameter 150 mm dengan tinggi 300 mm masing-masing 30 silinder untuk pengujian tekan dan 30 silinder untuk pengujian tarik belah beton. Sedangkan untuk pengujian geser beton dibuat 30 specimen beton berbentuk doubel-L berukuran (200x300x75) mm. Hasil penelitian diperoleh bahwa pemakaian serat dengan rasio L/d=12,5 akan dapat meningkatkan kuat tarik dan kuat geser beton dimana pemakaian serat bendrat sebanyak 3% diperoleh kuat tarik terbesar 2,41 MPa atau meningkat 2 kali dari beton tanpa serat, sedangkan untuk kuat geser maksimal mencapai 4,94 MPa dengan kenaikan 54% dibandingkan dengan beton tanpa serat.Kata kunci : beton serat, serat bendrat, kuat tarik, kuat geser.

2018 ◽  
Vol 162 ◽  
pp. 02003 ◽  
Author(s):  
Shakir Salih ◽  
Qais Frayyeh ◽  
Manolia Ali

Slurry infiltrated fiber concrete (SIFCON) is one of the recently developed construction material. SIFCON could be considered as a special type of fiber concrete with high fiber content. The matrix of SIFCON consists of flowing cement mortar or cement slurry. SIFCON has a very good potential for application in area where resistance to impact and high ductility are needed especially in designing the seismic retrofit, in the structures under impact and explosive effects and repair of structural reinforced concrete element. The main objective of this paper is to determine the effect of steel fiber content and silica fume (SF) cement replacement on the mechanical properties of SIFCON concrete. The percentage of SF replacement was 10% by weight of cement in SIFCON slurry, and three different volume fractions of hooked ended steel fiber (6, 8.5, and 11) % were used. The tested properties of SIFCON were compressive strength and splitting tensile strength which were carried out on standard size of cubes and cylinders respectively at the age of 7and 28 days. It was observed that the mechanical properties of SIFCON were affected in a positive manner by using silica fume as a partial replacement of cement and by adding steel fiber reinforcement in different percentages. The compressive and splitting tensile strength up to 83.7 MPa and 17.3MPa, respectively were obtained at the age of 28 days.


2010 ◽  
Vol 97-101 ◽  
pp. 814-817 ◽  
Author(s):  
Jun Deng

One of the greatest drawbacks to predicting the behaviour of bonded joints has been the lack of reliable data on the mechanical properties of adhesives. In this study, methods for determining mechanical properties of structural adhesive were discussed. The Young’s modulus, Poisson’s ratio and tensile strength of the adhesive were tested by dogbone specimens (bulk form) and butt joint specimens (in situ form). The shear modulus and shear strength were test by V-notched specimens (bulk form) and thick adherend lap-shear (TALS) joint specimens (in situ form). The test results show that the elastic modulus provided by the manufacturer is too low, the dogbone specimen is better than the butt joint specimen to test the tensile strength and elastic modulus and the TALS joint specimen is better than the V-notched specimen to test the shear strength.


2011 ◽  
Vol 477 ◽  
pp. 274-279 ◽  
Author(s):  
Yi Xu ◽  
Lin Hua Jiang ◽  
Hong Qiang Chu ◽  
Lei Chen

In this study, the effects of fiber types on the mechanical properties of lightweight aggregate concretes were investigated. Three types of fibers, namely, polypropylene fiber, steel fiber and water hyacinth (Eichhornia crassipes) fiber, and two types of lightweight aggregates, namely, expanded polystyrene and ceramsite were used. The compressive strength and splitting tensile strength of concretes were tested. The results show that both the compressive strength and the splitting tensile strength were improved by adding a reasonable volume of steel fiber and polypropylene fiber into LWAC. The addition of water hyacinth fiber had little effect on the compressive strength of LWAC, while a little increase was observed in the splitting tensile strength.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Yuqing Chen ◽  
Guofeng Wang ◽  
Yongkang Liu ◽  
Liqiang Zhan ◽  
He Diao ◽  
...  

Titanium alloys used to be welded to gain good joint strength at 920 °C through diffusion bonding. However, due to the heat preservation at high temperatures for a long time, we obtain joints with great bond strength while the mechanical properties of the sheet are lost. In this paper, taking Ti6Al4V alloy as an example, we studied the microstructure of the surface under the different times of surface mechanical attrition treatment (SMAT). In addition, the microstructure and mechanical properties after diffusion bonding at 800 °C-5 MPa-1 h were also conducted. The results show that the shear strength of TC4 alloy welded joint after SMAT treatment is improved, and the maximum shear strength can reach 797.7 MPa, up about 32.4%


Fibers ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 36 ◽  
Author(s):  
Hisham Alabduljabbar ◽  
Rayed Alyousef ◽  
Fahed Alrshoudi ◽  
Abdulaziz Alaskar ◽  
Ahmed Fathi ◽  
...  

The behaviors of the fresh and mechanical properties of self-compacting concrete (SCC) are different from those of normal concrete mix. Previous research has investigated the benefits of this concrete mix by incorporating different constituent materials. The current research aims to develop a steel fiber reinforcement (SFR)‒SCC mixture and to study the effectiveness of different cement replacement materials (CRMs) on the fresh and mechanical properties of the SFR‒SCC mixtures. CRMs have been used to replace cement content, and the use of different water/cement ratios may lower the cost of CRMs, which include microwave-incinerated rice husk ash, silica fume, and fly ash. Fresh behavior, such as flow and filling ability and capacity segregation, was examined by a special test in SCC on the basis of their specifications. Moreover, compressive and splitting tensile strength tests were determined to simulate the hardened behavior for the concrete specimens. Experimental findings showed that, the V-funnel and L-box were within the accepted range for SCC. Tensile and flexural strength increases upon the use of 10% silica fume were found when compared with other groups; the ideal percentage of steel fiber that should be combined in this hybrid was 2% of the total weight of the binder. Overall, steel fibers generated a heightened compressive and splitting tensile strength in the self-compacting concrete mixes.


2018 ◽  
Vol 203 ◽  
pp. 06011
Author(s):  
Saeed Ahmad ◽  
Ayub Elahi ◽  
Hafiz Waheed Iqbal ◽  
Faiza Mehmood

The objective of this research work was to determine the effect of fiber cocktail on mechanical properties of concrete. Three types of fibers were used namely monofilament polypropylene fiber, steel fiber and glass fiber. Steel and glass fiber were incorporated in concrete at different dosages while the content of Polypropylene fiber was kept constant. For this purpose, cubes (150×150×150mm) and prisms (101×101×508mm) were casted for compressive strength test on cubes and Two-Point load test on prisms. Eighteen different mixes were prepared such as control mix, single fiber concrete, double hybrid concrete and triple hybrid concrete. It was observed that both compressive and flexural strength increased with addition of single, double and triple fibers. However, the strengths of triple hybrid concrete were observed to be lesser as compared to single and double hybrid concrete.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1985-1989
Author(s):  
Jia Bin Wang ◽  
Di Tao Niu ◽  
Rui Ma ◽  
Ze Long Mi

In order to investigate the carbonation resistance of shotcrete and the mechanical properties after carbonation, the accelerated carbonation test was carried out. The results indicate that the carbonation resistance of shotcrete is superior to that of normal concrete. With the increasing of carbonation depth, compressive strength and splitting tensile strength of shotcrete grew rapidly. The admixing of steel fiber can further improve the carbonation resistance, reduce the carbonation rate, and increase the splitting tensile strength of shotcrete greatly. Besides, based on analyzing the effects of construction technology and steel fiber of concrete for the carbonation resistance, a carbonation depth model for shotcrete was established. Key words: shotcrete; carbonation; steel fiber; mechanical properties


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
E. Rabiaa ◽  
R. A. S. Mohamed ◽  
W. H. Sofi ◽  
Taher A. Tawfik

This research investigates the simultaneous impact of two different types of steel fibers, nanometakaolin, and nanosilica on the mechanical properties of geopolymer concrete (GPC) mixes. To achieve this aim, different geopolymer concrete mixes were prepared. Firstly, with and without nanomaterials (nanosilica and nanometakaolin) of 0, 2%, 4%, 6%, and 8% from ground granulated blast furnace slag (GGBFS) were used. Secondly, steel fiber (hooked end and crimped) content of (0, 0.5%, 1, and 1.5%) was used. Thirdly, optimum values of nanomaterials with the optimum values of steel fiber were used. Crimped and hooked-end steel fibers were utilized with an aspect ratio of 60 and a length of 30 mm. Geopolymer mixes were manufactured by using a constant percentage of alkaline activator to binder proportion equal to 0.45 with GGBFS cured at ambient conditions. For alkaline activator, sodium hydroxide molar (NaOH) and sodium hydroxide solution (NaOH) were used according to a proportion (Na2SiO3/NaOH) of 2.33. The hardened concrete tests were performed through the usage of splitting tensile strength, flexural, and compressive experiments to determine the impact of steel fibers, nanometakaolin, and nanosilica individually and combined on performance of GPC specimens. The results illustrated that using a mix composed of the optimum steel fibers (1% content) accompanied by an optimum percentage of 6% nanometakaolin or 4% nanosilica demonstrated a significant enhancement in the mechanical properties of GPC specimens compared to all other mixtures. Besides, the impact of using nanomaterials individually was found to be predominant on compressive strength on GPC specimens especially with the usage of the optimum values. However, using nanomaterials individually compared to using the steel fibers individually was found to have approximately the same splitting tensile strength and flexural performance.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1654
Author(s):  
Huizhong Li ◽  
Liangming Cao ◽  
Xiaopeng Liang ◽  
Wending Zhang ◽  
Chunping Wu ◽  
...  

The effect of rolling temperatures on the interface microstructure and mechanical properties is investigated using 2-mm-thick TA1/Q235B composite sheets, which were prepared after nine passes of hot rolling of explosive welded plates. The results show that the vortex region and the transition layer exist in the interface at the explosive welded plate, while only the transition layer exists in the interface after hot rolling. The transition layer is composed of α-Ti, TiC, Fe, and FeTi, and the thickness increases with the increasing rolling temperature. The microhardness of the explosive welded plate is higher than that of the hot-rolling sheet, and the microhardness of interface are higher than that of matrix metals. The interface shear strength and tensile elongation of the hot-rolled sheet increase with the increasing hot rolling temperature, while the ultimate tensile strength (UTS), yield strength (YS) and Young modulus decrease with the increase of hot rolling temperature. The shear strength of sheets is related to the interfacial compounds, and the tensile strength is mainly affected by the grain morphology of the matrix.


2012 ◽  
Vol 424-425 ◽  
pp. 908-911
Author(s):  
Xian Long Luo ◽  
Li Zeng Li ◽  
Hui Zeng Yin

The spayed concrete is blended with steel fiber,which can improve tensile strength and higher resistance to deformation. This method is applied to support underground chamber surrounded by weak wallrock or chamber bearing great load. this paper accounts for the theory of sprayed steel fiber concrete and its application in tunnelling construction.And aslo, its comprehensive economic effect will be emphasized in comparison with jetting concrete net from the aspects of technology,safety and economy.


Sign in / Sign up

Export Citation Format

Share Document