scholarly journals SILVER IN THE GOLD DEPOSITS OF THE AMUR REGION

2021 ◽  
pp. 130-136
Author(s):  
NATALIA VALENTINOVNA MOISEENKO ◽  
◽  
SVETLANA MIKHAILOVNA AVRAMENKO ◽  

The main minerals of native silver hubs on gold deposits of the Amur region (Albyn, Malomyr, Pioner, Pokrovskoe) were studied. It has been established that silver has a positive correlation with gold, zinc, arsenic, antimony, lead and cadmium. There is a negative correlation of silver with zirconium, yttrium, hafnia, tantalum and rare earth elements.

Author(s):  
B. N. Abramov

The distribution of rare-earth elements (REE) in ores of gold deposits of East Transbaikalia has shown that the ore-bearing magma chambers have different depths and degrees of differentiation. The greatest degree of differentiation was within the magmatic foci (Eu/Eu* — 0,29—0,32; Rb/Sr — 0,98—1,40), which are the sources of gold-quartz-arsenopyrite ores, the magmatic sources of the gold-quartz and gold-sulfide-quartz ores (Eu/Eu* — 0,53—0,72; Rb/Sr of 0,10 to 0,54) had lesser degree of differentiation. Magma chambers that are sources for the gold-quartz-arsenopyrite ores (Eu/Sm — 0,08—0,14), were at shallower depths than those for gold-quartz and gold-sulfide-quartz ores (Eu/Sm — 0,11—0,19). The formation of gold-quartz-arsenopyrite ores took place at the magma chambers, largely enriched in volatile components, it is indicated by the existence of a significant tetrad effects in REE patterns of (T1-4 - 0,80; 1,15; 1,16).


2019 ◽  
Vol 486 (5) ◽  
pp. 583-587
Author(s):  
A. M. Agashev

The paper presents the results of major and trace elements composition study of garnet megacrysts from Mir kimberlite pipe. On the major elements composition those garnets classified as low Cr and high Ti pyropes. Concentrations of TiO2 show a negative correlation with MgO и Cr2O3 contents in megacrysts composition. Fractional crystallization modeling indicates that the most appropriate melt to reproduce the garnet trace elements signatures is the melt of picritic composition. Composition of garnets crystallized from kimberlite melt do not correspond to observed natural garnets composition. Kimberlites contain less of Ti, Zr, Y and heavy REE (rare earth elements) but more of very incompatible elements such as light REE, Th, U, Nb, Ba then the model melt composition that necessary for garnet crystallization.


2021 ◽  
Author(s):  
Hatice Nur Bayram ◽  
Ali Erdem Bakkalbasi ◽  
Zeynep Doner ◽  
Ali Tugcan Unluer ◽  
Huseyın Kocaturk ◽  
...  

<p>Mediterranean type karstic bauxite deposits are considered as the primary source for aluminum (Al) production in Europe. During the Al production, Gallium (Ga) is extracted from the so called Bayer-liquor during the processing of bauxite to alumina. Ga, a rare metal, is widely used in modern chemistry and electronic industry. During the past decades, the worldwide demand for Ga has been continuously increasing. In Turkey, karstic bauxite deposits are generally found with shallow marine carbonate rocks which were deposited during Mesozoic period and located in Tauride Carbonate platform. Most of these karstic bauxite deposits can be hosted considerable Ga enrichments, with other immobile elements such as rare earth elements (REE), titanium (Ti), lithium (Li), and iron (Fe). This work focuses on the revealing of the potential Ga enrichments in bauxides from different deposits of Turkey (Mortaş-Doğankuzu, Konya; Küçükkoraş, Karaman; Acıelma-Yoğunoluk, Kahramanmaraş bauxite deposits). Geochemical data of major and trace elements of studied bauxite deposits show that these deposits have significant Ga enrichments (up to 72.6 ppm), as well as the REE (up to 580 ppm), Ti (up to 1.8%), and Li (up to 428 ppm) enrichments. In addition, the Ga enrichments show strong positive correlation with heavy rare earth elements (HREE) and moderate positive correlation with Al, Fe, Ti, Li and Sn elements. In this context, it can be concluded that the most probable source for Ga is rock forming aluminosilicates of the source rock due to the substitution with Al<sup>3+</sup> and Fe<sup>3+</sup>. During weathering process Ga exhibiting immobile behavior much like Al and Fe. Gallium is than incorporated into Al-bearing phases and thus enriched in the bauxite. Presence of Li content can be also interpreted as a contribution from micaceous source such as meta-carbonate rocks of Tauride platform. Moreover, geochemical association between Ga, Ti, Li, tin (Sn) and HREE can be explained by the redox and pH conditions causing other ions seperated from shallow environments.</p>


2019 ◽  
Vol 484 (1) ◽  
pp. 66-70
Author(s):  
A. A. Biryukov ◽  
A. V. Volkov ◽  
K. Yu. Murashov ◽  
A. A. Sidorov

This study discusses new data on the isotopy of δ34S, δ18O, microelements, and rare earth elements (REE) in the Au deposits of the Glukarinsky ore cluster. The identified geochemical features are indicative of the reducing conditions of ore deposition, participation of magmatogenic fluid in ore formation, and the enclosing rocks being the possible sources of ore material. Isotope studies indicate that the ore-forming fluid has a mixed, metamorphogenic–magmatogenic composition. The obtained results make it possible to qualify the examined objects as Au deposits associated with granitoid intrusives.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 338
Author(s):  
Jiasheng Wang ◽  
Jinyang Chang ◽  
Chao Li ◽  
Zhenchun Han ◽  
Tao Wang ◽  
...  

The Zhesang gold deposit of southeastern Yunnan is an important component of the Dian-Qian-Gui (Yunnan, Guizhou, and Guangxi) “Golden Triangle”, which hosts a multitude of Carlin-like gold deposits (CLGDs). Calcite is one of the most common gangue minerals in Zhesang. The calcites that have been found in the mining area are classified as ore-stage and post-ore calcites. The ore-stage calcite exhibits a clear paragenetic relationship with gold-bearing arsenopyrite and with an alteration halo that has been cut by the post-ore calcite. To elucidate the origin of the ore-forming fluids of the Zhesang gold deposit and to investigate the possibility of utilizing calcite geochemistry as prospecting indicators, the rare earth elements (REEs), Y, Fe, Mn and Mg contents, and C-O isotopic compositions of calcites from Zhesang have been analyzed. The ore-stage calcite is enriched in middle rare earth elements (MREEs) relative to light rare earth elements (LREEs) and heavy rare earth elements (HREEs) (MREE/LREE = 1.11–1.61, MREE/HREE = 6.12–8.22), whereas post-ore calcite exhibits an enrichment in LREE (LREE/HREE = 4.39–14.93, MREE/LREE = 0.35–0.71). The ore-stage and post-ore calcites were both formed by hydrothermal fluids; however, these hydrothermal fluids may have different sources. The Fe contents of the ore-stage calcite are significantly higher than those of post-ore calcite (4690–6300 μg/g versus 2030–2730 μg/g). Ore-stage calcite also has significantly lower δ18OV-SMOW values than post-ore calcite (11.03–12.49‰ versus 16.48–17.14‰). These calcites with an MREE/LREE ratio greater than 0.92, MREE/HREE ratio greater than 5.69, Fe content greater than 3827 μg/g, and δ18OV-SMOW value less than 14.40‰ represent ore-stage calcites and are important prospecting guidelines. According to the REE, C-O isotopic characteristics of the calcites and the previous findings, it is inferred that the ore-forming fluids of the Zhesang gold deposit were a mixture of crustal fluid by meteoric water leaching wall rocks and a small amount of basic magmatic fluid. The formation of post-ore calcite might be derived from meteoric water and marine carbonates interaction. The ore-forming fluids of the Zhesang gold deposit may be associated with the intrusion of diabase that outcrops in the mining area, and that the basic magmatic activities of the Indosinian period also provided some of the ore-forming materials and heat for gold mineralization.


2020 ◽  
pp. 80-84
Author(s):  
NATALIA VALENTINOVNA MOISEENKO ◽  

Data on the content of radioactive elements in the metasomatites of the Pokrovskoe gold ore deposit were obtained. It was found that U and Th are scattered in gold-bearing metasomatites. According to the results of the correlation analysis, a positive and negative correlation of U and Th with rare, rare-earth and ore elements in the metasomatites of the deposit was established.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shilin Gao ◽  
Zhuhong Wang ◽  
Qixin Wu ◽  
Wanfa Wang ◽  
Chaochao Peng ◽  
...  

Due to the rapid urbanization process, the consumption of trace and rare earth elements has dramatically increased. Although some elements have been extensively studied due to their high biological toxicity, most elements are ignored and taken seriously in recent years. Here, we investigated the urban geochemistry, source, and anthropogenic responding factor for 15 trace elements (Cd, Pb, Co, Sn, Cu, Ni, V, As, Mo, Sb, Al, Li, Fe, Zn, and Sr) and rare earth elements in surface water of the Suzhou city. The percentage of anthropogenic gadolinium vary from 46.9% (YCH-2) to 92.8% (WS-2), while the analysis of variance shows that human activities may affect the distribution of Cd, Co, Sn, Ni, As, Li, Fe, and Sr. Three clusters are obtained from the correlation and cluster analysis. The Cluster 1 with a significant positive correlation of Pb, Cd, Gd, Li, Sr, Co, Fe, Ni, and Sn reflecting these elements are dominantly influenced by urban sewage and industrial activities. The Cluster 2 (Zn, Cu, and Al) can be attributed to geologic sources, while the Cluster 3 (V, Mo, As, and Sb) indicate the combined action of agricultural and urban activities. The Gd versus Li plot showed a significant positive correlation, which can be used as a new indicator to trace the anthropogenic impact on urban waters. Overall, this study provides clear evidence that the content and distribution of Gd and Li are deeply affected by human activities in a high-tech industrial city (Suzhou), which can be regarded as emerging elements contaminations.


Sign in / Sign up

Export Citation Format

Share Document