scholarly journals Liposome Characterization, Applications and Regulatory landscape in US

2021 ◽  
Vol 9 (2) ◽  
pp. 81-89
Author(s):  
Amit Kumar ◽  
Madhu Gupta ◽  
Simran Braya

Liposomes are lipid based drug carrier whose therapeutic performance depends on their structure. Liposomes offer several advantages over the conventional drug like target drug delivery, reduced toxicity, and extended pharmacokinetics. Characterization and Identification of critical attribute of liposomal formulation and suitable strategies for control during product development is important for quality of the liposomal drug product. This paper discusses the current status of the liposomal drug product and strategy used in regulating liposome product. Despite of lack of regulatory guidelines many liposome formulations get approved which shows the potential of liposome drug products.

2020 ◽  
Vol 10 (4) ◽  
pp. 242-252
Author(s):  
Shrikrishna T. Mule ◽  
O.G. Bhusnure ◽  
S.S. Waghmare ◽  
Mamta R. Mali

The scrutiny of medical devices industry as well as pharmaceutical industry for its application in health care industry on different platform is captured the 3D printing technique.  3D printing technology withstand for a very long duration only because of the approval of medical devices, 3D printed tablets and also with the advent of USFDA guideline on technical consideration. This technology is specific to devices utilizing preservative manufacturing. Many thoughts are triggered by 3D printing this technology and for successful delivery of intended product which is necessarily take into a consideration. In this review paper expectation limitations of some regulatory companies, Advantages, disadvantages, what type problems are arises while establishing this setups for drug product production, method, application, and manufacturing risk are represented. It also gives information about the current status of 3D printing technology in research and development of drug products.  For the fabrication of novel solid dosage form a number of 3D printing technology have been developed. This review is mainly focused on describing different technology used for the application of 3D printing in pharmaceutical industry.  Keywords: - 3D printing technology, recent trend, Opportunities, personalize medicine, challenges, future.


2021 ◽  
Vol 9 (1) ◽  
pp. 62-71
Author(s):  
Veer J. Patel ◽  
Dasharath M. Patel

The drug approval process is country-specific. The regulatory framework of all the national regulatory agencies differ from one another in terms of administration and product specific guidelines for registration of drug and drug products in a particular country. Every national regulatory authority provides regulatory guidelines for drug or drug product registration and the pharmaceutical industries which rely upon these guidelines prepare drug applications along with all the required administrative, non-clinical and clinical data in the form of a technical dossier which is known as Common Technical Document. This Dossier is prepared either in an electronic format or in the paper submission format. This review focuses on the comparative study of the registration requirements for getting a drug approval in India, South Africa and United States of America. The significant differences between the technical requirements of these three markets have been discussed in detail.


Author(s):  
Neeraj Mishra ◽  
Tejinder Singh ◽  
Nidhi ◽  
Supandeep Singh Hallan ◽  
Veerpal Kaur

Breast cancer left overs one of the greatest common metastasis disease in females. Advanced diagnostic devices and better understanding of tumour biology can extend the better therapeutic outcomes. Nanotechnology is a tool that helps in cancer diagnosis and treatment therapy. Many nanocarriers such as solid lipid nanoparticles, magnetic nanoparticles, nanocrystals, nanogels, nano-lipid nanocarriers, biodegradable nanoparticles, liposomes, and dendrimers are introduced to improve the therapeutic efficacy of antineoplastic agents. Surface modified target drug delivery system has the potential to increase the therapeutic effects and also reduce the cytotoxicity of breast cancer. Different approaches have been explored for treatment of breast cancer. This review describes the recent advances in the development of nanocarriers used for the targeted treatment of breast cancer. It also focuses on etiology, risk factor and conventional therapy of breast cancer. KEYWORDS: Breast Cancer; Nano-carriers; Tumor Targeting; Ligands; Receptor.


2019 ◽  
Vol 24 (42) ◽  
pp. 5081-5083 ◽  
Author(s):  
Mohd. A. Mirza ◽  
Zeenat Iqbal

Background: The last few decades have witnessed enormous advancements in the field of Pharmaceutical drug, design and delivery. One of the recent developments is the advent of 3DP technology. It has earlier been successfully employed in fields like aerospace, architecture, tissue engineering, biomedical research, medical device and others, has recently forayed into the pharmaceutical industry.Commonly understood as an additive manufacturing technology, 3DP aims at delivering customized drug products and is the most acceptable form of“personalized medicine”. Methods: Data bases and search engines of regulatory agencies like USFDA and EMA have been searched thoroughly for relevant guidelines and approved products. Other portals like PubMed and Google Scholar were also ferreted for any relevant repository of publications are referred to wherever required. Results: So far only one pharmaceutical product has been approved in this category by USFDA and stringent regulatory agencies are working over the drafting of guidelines and technical issues. Major research of this category belongs to the academic domain. Conclusion: It is also implicit to such new technologies that there would be numerous challenges and doubts before these are accepted as safe and efficacious. The situation demands concerted and cautious efforts to bring in foolproof regulatory guidelines which would ultimately lead to the success of this revolutionary technology.


2020 ◽  
Vol 15 ◽  
Author(s):  
Geeta Aggarwal ◽  
Manju Nagpal ◽  
Ameya Sharma ◽  
Vivek Puri ◽  
Gitika Arora Dhingra

Background: Biopharmaceuticals such as Biologic medicinal products have been in clinical use over the past three decades and have benefited towards the therapy of degenerative and critical metabolic diseases. It is forecasted that market of biologics will be going to increase at a rate of 20% per year, and by 2025, more than ˃ 50% of new drug approvals may be biological products. The increasing utilization of the biologics necessitates for cost control, especially for innovators products that have enjoyed a lengthy period of exclusive use. As the first wave of biopharmaceuticals is expired or set to expire, it has led to various opportunities for the expansion of bio-similars i.e. copied versions of original biologics with same biologic activity. Development of biosimilars is expected to promote market competition, meet worldwide demand, sustain the healthcare systems and maintain the incentives for innovation. Methods: Appraisal of published articles from peer reviewed journals, PubMed literature, latest news and guidelines from European Medicine Agency, US Food Drug Administration (FDA) and India are used to identify data for review. Results: Main insight into the quality requirements concerning biologics, current status of regulation of biosimilars and upcoming challenges lying ahead for the upgrading of marketing authorization of bio-similars has been incorporated. Compiled literature on therapeutic status, regulatory guidelines and the emerging trends and opportunities of biosimilars has been thoroughly stated. Conclusion: Updates on biosimilars will support to investigate the possible impact of bio-similars on healthcare market.


Author(s):  
Kapil Pihwal ◽  
Neelam Pawar ◽  
Sheikh Aamir ◽  
Mohammad Shahbaz Alam ◽  
Vikas Rathee

Background: The CIS region has a potential market for India. The registration of the drug products in CIS regions is a challenging task because these countries have no harmonized regulatory organization. The CIS region includes 12 countries such as Russia, Kyrgyzstan, Ukraine, Uzbekistan, Kazakhstan, Tajikistan, Turkmenistan, Armenia, Azerbaijan, Belarus, Georgia and Moldova, which require different regulatory guidelines for medicinal product registration as per their FDA guidelines. The different guidelines for the same region become a challenging task for the manufacturer and exporter. The registration of the same product for different countries of CIS is not possible with the same dossier due to the lack of their regulatory harmonization. These countries obey their country-specific dossier format, so to target these market manufacturers and exporters needs to submit different dossier documents for different countries. But Ukraine and Kazakhstan have harmonization and it varies in Uzbekistan and Tajikistan. Ukraine and Kazakhstan are also imposing strict rules and expecting USFDA level documents for approval. Conclusion: The overall conclusion is that harmonization in CIS is highly imbalanced, which affects both time and cost for product registration. Harmonization is the need of the era for easy product registration, and it will be beneficial for the manufacturer, regulator, importer, exporter, and to access medicines of high public health value.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shi Zeng ◽  
Fengbo Wu ◽  
Bo Li ◽  
Xiangrong Song ◽  
Yu Zheng ◽  
...  

An amphiphilic polymer RGD-PEG-Chol which can be produced in large scale at a very low cost has been synthesized successfully. The synthesized intermediates and final products were characterized and confirmed by1H nuclear magnetic resonance spectrum (1H NMR) and Fourier transform infrared spectrum (FT-IR). The paclitaxel- (PTX-) loaded liposomes based on RGD-PEG-Chol were then prepared by film formation method. The liposomes had a size within 100 nm and significantly enhanced the cytotoxicity of paclitaxel to B16F10 cell as demonstrated by MTT test (IC50= 0.079 μg/mL of RGD-modified PTX-loaded liposomes compared to 9.57 μg/mL of free PTX). Flow cytometry analysis revealed that the cellular uptake of coumarin encapsulated in the RGD-PEG-Chol modified liposome was increased for HUVEC cells. This work provides a reasonable, facile, and economic approach to prepare peptide-modified liposome materials with controllable performances and the obtained linear RGD-modified PTX-loaded liposomes might be attractive as a drug delivery system.


2017 ◽  
Vol 78 (6) ◽  
pp. 283-291 ◽  
Author(s):  
Yuan Sun ◽  
Chen Kang ◽  
Fei Liu ◽  
You Zhou ◽  
Lei Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document