scholarly journals 4D Printing: The Dawn of “Smart” Drug Delivery Systems and Biomedical Applications

2021 ◽  
Vol 11 (5-S) ◽  
pp. 131-137
Author(s):  
Ahmar Khan ◽  
Mir Javid Iqbal ◽  
Saima Amin ◽  
Humaira Bilal ◽  
, Bilquees ◽  
...  

With the approval of first 3D printed drug “spritam” by USFDA, 3D printing is gaining acceptance in healthcare, engineering and other aspects of life. Taking 3D printing towards the next step gives birth to what is referred to as “4D printing”. The full credit behind the unveiling of 4D printing technology in front of the world goes to Massachusetts Institute of Technology (MIT), who revealed “time” in this technology as the fourth dimension.  4D printing is a renovation of 3D printing wherein special materials (referred to as smart materials) are incorporated which change their morphology post printing in response to a stimulus. Depending upon the applicability of this technology, there may be a variety of stimuli, most common among them being pH, water, heat, wind and other forms of energy.  The upper hand of 4D printing over 3D printing is that 3D printed structures are generally immobile, rigid and inanimate whereas 4D printed structures are flexible, mobile and able to interact with the surrounding environment based on the stimulus. This capability of 4D printing to transform 3D structures into smart structures in response to various stimuli promises a great potential for biomedical and bioengineering applications. The potential of 4D printing in developing pre-programmed biomaterials that can undergo transformations lays new foundations for enabling smart pharmacology, personalized medicine, and smart drug delivery, all of which can help in combating diseases in a smarter way. Hence, the theme of this paper is about the potential of 4D printing in creating smart drug delivery, smart pharmacology, targeted drug delivery and better patient compliance. The paper highlights the recent advancements of 4D printing in healthcare sector and ways by which 4D printing is doing wonders in creating smart drug delivery and tailored medicine. The major constraints in the approach have also been highlighted. Keywords: 4D printing, smart, drug delivery system, patient compliance, biomaterials, tailored medicine

2021 ◽  
Vol 1162 ◽  
pp. 122456
Author(s):  
Kolsoum Dalvand ◽  
A. Ghiasvand ◽  
Vipul Gupta ◽  
Brett Paull

2014 ◽  
Vol 50 (58) ◽  
pp. 7743-7765 ◽  
Author(s):  
Carmen Alvarez-Lorenzo ◽  
Angel Concheiro

Smart materials can endow implantable depots, targetable nanocarriers and insertable medical devices with activation-modulated and feedback-regulated control of drug release.


2020 ◽  
Vol 10 (20) ◽  
pp. 7254
Author(s):  
Hoon Yeub Jeong ◽  
Soo-Chan An ◽  
Yeonsoo Lim ◽  
Min Ji Jeong ◽  
Namhun Kim ◽  
...  

Three-dimensional (3D) printing is a new paradigm in customized manufacturing and allows the fabrication of complex structures that are difficult to realize with other conventional methods. Four-dimensional (4D) printing adds active, responsive functions to 3D-printed components, which can respond to various environmental stimuli. This review introduces recent ideas in 3D and 4D printing of mechanical multistable structures. Three-dimensional printing of multistable structures can enable highly reconfigurable components, which can bring many new breakthroughs to 3D printing. By adopting smart materials in multistable structures, more advanced functionalities and enhanced controllability can also be obtained in 4D printing. This could be useful for various smart and programmable actuators. In this review, we first introduce three representative approaches for 3D printing of multistable structures: strained layers, compliant mechanisms, and mechanical metamaterials. Then, we discuss 4D printing of multistable structures that can help overcome the limitation of conventional 4D printing research. Lastly, we conclude with future prospects.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1864 ◽  
Author(s):  
Ming-You Shie ◽  
Yu-Fang Shen ◽  
Suryani Dyah Astuti ◽  
Alvin Kai-Xing Lee ◽  
Shu-Hsien Lin ◽  
...  

The purpose of 4D printing is to embed a product design into a deformable smart material using a traditional 3D printer. The 3D printed object can be assembled or transformed into intended designs by applying certain conditions or forms of stimulation such as temperature, pressure, humidity, pH, wind, or light. Simply put, 4D printing is a continuum of 3D printing technology that is now able to print objects which change over time. In previous studies, many smart materials were shown to have 4D printing characteristics. In this paper, we specifically review the current application, respective activation methods, characteristics, and future prospects of various polymeric materials in 4D printing, which are expected to contribute to the development of 4D printing polymeric materials and technology.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2013 ◽  
Vol 20 (28) ◽  
pp. 3429-3447 ◽  
Author(s):  
Stefania Pagliari ◽  
Sara Romanazzo ◽  
Diogo Mosqueira ◽  
Perpetua Pinto-do-O ◽  
Takao Aoyagi ◽  
...  

2020 ◽  
Vol 26 (15) ◽  
pp. 1637-1649 ◽  
Author(s):  
Imran Ali ◽  
Sofi D. Mukhtar ◽  
Heyam S. Ali ◽  
Marcus T. Scotti ◽  
Luciana Scotti

Background: Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors that have recently been developed and recommended for use by scientists because of their potential targeting capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery. Method: The present review article provides an overview of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors. Results: This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine, personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and perspectives, biodegradability and safety. Conclusions: This article will benefit academia, researchers, clinicians, and government authorities by providing a basis for further research advancements.


Polymer ◽  
2017 ◽  
Vol 110 ◽  
pp. 235-241 ◽  
Author(s):  
Yanfang Hu ◽  
Ming Deng ◽  
Huailin Yang ◽  
Li Chen ◽  
Chunsheng Xiao ◽  
...  

2021 ◽  
Vol 63 ◽  
pp. 102433
Author(s):  
Sakshi Phogat ◽  
Abhishek Saxena ◽  
Neha Kapoor ◽  
Charu Aggarwal ◽  
Archana Tiwari

Sign in / Sign up

Export Citation Format

Share Document