scholarly journals Formulation by Design (FbD) approach to develop Tenofovir Disoproxil Fumarate loaded Nanostructured Lipid Carriers (NLCs) for the aptness of nose to brain delivery

2019 ◽  
Vol 9 (2) ◽  
pp. 148-159 ◽  
Author(s):  
Anupam Sarma ◽  
Malay K. Das

The objective of the present investigation was to optimize and develop Tenofovir Disoproxil Fumarate (TDF) loaded Nanostrucrured Lipid Carriers (NLCs) with Compritol 888 ATO as solid lipid and oleic acid as liquid lipid by modified emulsion solvent diffusion method using Central Composite design (CCD). Three independent variables viz., Lipid to Drug ratio (A), Aqueous phase pH (B) and Sonication time (min) (C) were taken to investigate their effect on dependent variables viz., particle size (nm) (R1), PDI (R2) and % Entrapment Efficiency (%EE) (R3). Optimized formula of NLC was selected from the design space which was further optimized by changing the surfactants quantity. NLCs were evaluated for physicochemical, morphological, solid state characterization, and in-vitro dissolution in PBS pH 6.4, PBS 7.4 and ACSF. The average particle size was found to be 94.7 ± 15.70 nm with PDI of 0.380 ± 0.024 and 134.3 ± 9.71 nm with PDI of 0.358 ± 0.038 respectively for T4 and T5 NLC formulation. The zeta potential value of -17. ± 3.87 mV and -17.17 ± 1.05 mV and %EE of 35.5 ± 1.04 % and 34.2 ± 2.78 %. Overall, the above finding shows promising results in the area of developing non-invasive intranasal route as an alternative to oral route for brain delivery.  Keywords: Central composite design, Intranasal, Neuro-AIDS, CNS targeting.

Author(s):  
Amruta Papdiwal ◽  
Kishor Sagar ◽  
Vishal Pande

Poor water solubility and slow dissolution rate are major issues for the majority of upcoming and existing biologically active pharmaceutical compounds. Nateglinide is Biopharmaceutical Classification System Class-II drug that has low solubility and high permeability. The purpose of the present study was to improve the solubility and dissolution rate of Nateglinide by the preparation of nanosuspension by the nanoprecipitation technique. Nateglinide nanosuspension was evaluated for its particle size, in vitro dissolution study, and characterized by differential scanning calorimetry and scanning electron microscopy. The optimized formulation showed an average particle size of 207 nm and zeta potential of -25.8 mV. The rate of dissolution of the optimized nanosuspension was enhanced by 83% in 50 min relative to micronized suspension of nateglinide (37% in 50 min). This improvement was mainly due to the formulation of nanosized particles of Nateglinide. Stability study revealed that nanosuspension was more stable at room temperature and refrigerator condition with no significant change in particle size distribution. These results indicate that the nateglinide loaded nanosuspension may significantly improve in vitro dissolution rate and thereby possibly enhance the onset of therapeutic effect.


Author(s):  
Kiranmai Mandava ◽  
Kruthika Lalit ◽  
Venu Madhav Katla

The objective of the study was to develop silver nanoparticles loaded with Ketoprofen (Ag-KP) for increasing the drug solubility and thereby its bioavailability. Ag-KP were prepared by the solvent evaporation method using β-Cyclodextrin as a biodegradable polymer. Different formulations of Ag-KP were characterized for the drug entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), particle size analysis, X-ray diffraction studies (XRD), scanning electron microscopy (SEM) and  in-vitro dissolution studies. The optimized formulation (F6) has shown an average particle size of 167.8 ± 3.46 nm,zeta potential of -23.7 ± 1.46 mV. FTIR revealed that the drug showed good excipient compatibility. XRD studies showed that the drug has changed from crystalline to amorphous state. In all formulations, F6 formulation (optimized) exhibited high drug entrapment efficiency (∼93%). SEM studies indicated the shape of Ag-KP was roughly spherical with smooth surface. In vitro dissolution studies showed that Ag-KP from F6 formulation was 94.3 ± 4.9% but for the marketed formulation, it is only 84.6 ± 3.7% in 12 hours and F6 was found to be found stable for three months at both refrigerated and room temperature (RT).


Author(s):  
Pankaj P Nerker ◽  
Hitendra Mahajan ◽  
Sagar Deore ◽  
Pradyumn Ige

Nanosuspensions provide convenient formulations for improving the bioavailability and drug delivery. The objective of the investigation was to develop stable nanosuspension formulation of ramipril, with minimum surfactant concentration that could improve its solubility, stability and oral bioavailability. Ramipril is a potent antihypertensive drug, which act by inhibiting the angiotensin-converting enzyme. Nanosuspension was developed by antisolvent precipitation followed by high-pressure homogenization using hydrophilic polymers such as HPMC E5, HPMC E15, PVP K30, PVP K25, and PVA. The resulting nanosuspension was transformed into dry powder by freeze-drying process. Among all five formulations a formulation was choosen on the basis of results obtained from comparative study between different polymers based nanosuspension formulation of ramipril. The nanosuspension prepared was then evaluated for particle size, polydispesivity index, zeta potential, entrapment efficiency, saturated solubility study, scanning electron microscopy, differential scanning colorometry, and X ray diffraction. The combination of soya lecithin and pluronic F-68 as stabilizers yield nanosuspension with the smallest average particle size. The formulation of ramipril based on HPMC E 15 (Formulation B) shown enhanced dissolution rate. In which more than 60% of the drug was dissolved in the first 20 min compared to less than 25% of the pure drug within the same time period. The increase in the in vitro dissolution rate, nano size may favourably affect bioavailability.


2021 ◽  
Vol 68 (4) ◽  
pp. 861-881
Author(s):  
Trupti Powar ◽  
Ashok Hajare ◽  
Ravindra Jarag ◽  
Sopan Nangare

With the application of the quality by design (QbD) approach, a high-pressure homogenizer (HPH) methodology was employed to develop methotrexate nanosuspension (MTX-NS) to boost bioavailability. The Ishikawa diagram was used to analyze potential risk factors in formulation development. To screen and study the impact of various formulation and process factors on the critical quality attributes (CQA), the Placket–Burman design and central composite design were utilized. The number of HPH cycles, poloxamer 188 concentration, and tween 80 concentration were shown to be significant parameters (P<0.05), that were further optimized using Central Composite Design. The zeta potential of optimized lyophilized MTX-NS was determined to be –11.6 ± 7.52 mV and the average particle size was 260 ± 0.25 nm. In vitro cytotoxicity experiments revealed a greater than 80% inhibition, with apoptotic cells shrinking, fragmentation, and cell death. Furthermore, the Cmax and AUC0-t were increased by 2.53 and 8.83 folds, respectively. The relative bioavailability of MTX-NS was found to be 8.83 times higher than that of MTX-aqueous dispersion. As a result, the QbD method resulted in the development of a lyophilized MTX-NS with process understanding and control based on quality risk management.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ao Li ◽  
Aixia Zhu ◽  
Di Kong ◽  
Chunwei Wang ◽  
Shiping Liu ◽  
...  

For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.


2021 ◽  
Vol 15 (5) ◽  
pp. 8-12
Author(s):  
Kajal Tomer ◽  
Dilip Kumar Gupta

The drug can be released in a controlled manner using a gastro retentive dosage type. The main focus on the novel technological advances in the floating drug delivery method for gastric retention. The preparation of diacerein micro balloon is done by solvent diffusion method, using acrylic polymer like Eudragit S 100 and HPMC K4 M. The various evaluation of the prepared floating microsphere like its % yield, drug entrapment efficiency, particle size in-vitro dissolution, buoyancy, was studied. The floating microsphere was found to be spherical and range from 85 μm - 192 μm. Whereas the buoyancy in gastric mucosa between the range 30.5% -49.5%. The % yield and % entrapment efficiency were found under the range 61% - 82% and 45.1–84.1% respectively. The microsphere showed favorable in-vitro dissolution 76.8 to 94.45. The optimized formulation was found based on evaluation of floating micro-balloons, Formulation (M3E3) showed the best result as particle size 192 μm, DDE 84.1%, in vitro drug release 94.5%, and in vitro buoyancy 49.5%. all the formulations showed controlled release up to 24 hours.


Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


Author(s):  
Mohammed Sabar Al-lami ◽  
Malath H. Oudah ◽  
Firas A. Rahi

This study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formula was obtained with lowest average particle size of 84.05. This formula was studied for compatibility by FTIR and DSC, surface morphology by FESEM and crystalline state by XRPD. Then domperidone nanoparticles were formulated into a simple capsule dosage form in order to study of the in vitro release of drug from nanoparticles in comparison raw drug and mixture of polymer:drug ratios of 2:1. The release of domperidone from best formula was highly improved with a significant (p? 0.05) increase.


2021 ◽  
Vol 10 ◽  
Author(s):  
Venkata Subbaiah Kotakadi ◽  
Bhulakshmi Kolapalli ◽  
Susmila Aparna Gaddam ◽  
Sai Gopal Divi Venkata Ramana

Background: There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as chemistry, catalysis, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques where the chemicals used are quite often toxic and flammable. Objective: In the present study, we described a simple, cost effective and environmentally-friendly technique for green synthesis of silver and iron nanoparticles by using the aqueous extract of leafy vegetable Amaranthus viridis as a reducing agent. Methods: The silver and Iron nanoparticles (Av-AgNPs, Av-IONPs) were characterized by different spectral methods. The surface Plasmon resonance spectrums of Av-AgNPs, Av-IONPs were recorded at 422nm and 261nm. The Scanning electron microscopy (SEM) analysis reveals that the Av-AgNPs, Av-IONPs are roughly spherical in shape. Energy dispersive absorption spectroscopy (EDAX) of biosynthesized Av-AgNPs, Av-IONPs indicates the reduction of silver ions to elemental silver and iron ions to elemental iron. Results: The particle size analysis of Av-AgNPs and Av-IONPs was carried out by Dynamic light scattering (DLS) method the results reveal that both Av-AgNPs and Av-IONPs were polydispered in nature. The average particle size of Av-AgNPs is 55.8 nm with a polydispered index (PI) of 0.297, similarly the average particle size of Av-IONPs is 80.6 nm with an polydispered index (PI) of 0.469. Zeta-potential of Av-AgNPs was detected at -24.6 mV and Av-IONPs were detected at 28.8 mV, the result reveals that they high stability due their high negative charge and positive charge respectively. The dual synthesized Av-AgNPs, Av-IONPs exhibits excellent antioxidant activity by DPPH, H2O2 and NO methods. DPPH was proven to be the best when compared with the other two methods. The biosynthesized Av-AgNPs, Av-IONPs proved to have very good antimicrobial activity against gram +ve and gram –ve bacteria. Conclusion: when compared with standard antibiotic. There were several reports on green synthesis of metal nanoparticles using various plant parts, but here edible leafy vegetable Amaranthus viridis was used for biosynthesis of both Av-AgNPs and Av-IONPs.


Author(s):  
ARTI MAJUMDAR ◽  
NIDHI DUBEY ◽  
NITIN DUBEY

Objective: The aim of the present study is to develop docetaxel-loaded nano liquid crystals (NLCs) to enhanced and effective delivery of the drug to the skin cancer. Methods: NLCs bearing docetaxel were prepared by an emulsification solvent diffusion method. The formulated NLCs were characterized for average particle size, polydispersity index (PDI) Zeta potential, entrapment efficiency and in vitro drug release study. The prepared formulations were studied for it's in vitro cell line and cell uptake study. Results: It was revealed that the average size of NLCs was found 178.3±5.07, PDI was 0.189, percent entrapment efficiency was found 71.3±2.49 and Zeta potential was found-17.3±2.4. In vitro release determined by Franz diffusion cell was found 61.6±3.2% after 72 hr. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows that Docetaxel loaded NLCs were giving more cytotoxicity as compared to the plain drug. The cell uptake study was found enhanced uptake of fluorescein isothiocyanate (FITC) loaded NLCs in comparison to plain FITC. Docetaxel and docetaxel-loaded NLCs showed 28.3±0.3 and 39.3±1.3 growth inhibition respectively after 48h upon incubation at 0.5 µg/ml concentration (p<0.05). Conclusion: The result of the studies was concluded that NLCs can be used as impending drug delivery system which may enhance the drug uptake and maintain the drug level for longer period of time and it is potential carrier system which can be used for the treatment of skin diseases like cancer.


Sign in / Sign up

Export Citation Format

Share Document