scholarly journals Comparative Study of Herbal Extract of Piper Nigrum, Piper Album and Piper Longum on Various Characteristics of Pyrazinamide and Ethambutol Microspheres

2019 ◽  
Vol 9 (4-A) ◽  
pp. 72-78
Author(s):  
Prashant L Pingale ◽  
R. P. Ravindra

Bioenhancers are the ‘bioavailability enhancers’; they do not show any therapeutic effect, but when used in combination enhances the activity of drug molecule. In a cited research paper, the effect of various species of piper used as bioenhancer singly and in combination in an equal ratio. The methods used for preparation of microspheres are Complex Coacervation and Modified Emulsion Method. The prepared microspheres were evaluated for various parameters like in-vitro release, drug entrapment efficiency, percent bioadhesion, permeability study using intestinal sac method. The in-vitro drug release of drugs from formulations where Piper nigrum was used as bioenhancers was found to be about 66-70% in 12 hrs. when used singly. When bioenhancers used in combination the in-vitro drug release of drugs was increased up to 85-90% for combination of Piper album and Piper longum in an equal proportion, the same was about 35-40% in case of formulations where no bioenhancers was used. The microspheres found to be less than 130 micron in size. The DEE was found to be in the range of 27-67%. The bioadhesion of the microsphere were found to be 20-76% (increased in formulations where bioenhancers incorporated). The in- vitro release study by USP paddle apparatus, the important results from in-vitro release study relates to the very significant enhancement in drug release, due to presence of bioenhancers. Keywords: Microspheres, Bioenhancer, Piper nigrum, Piper album, Piper longum, Pyrazinamide, Ethambutol

Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 235-239
Author(s):  
NILESH M MAHAJAN ◽  
Kalyanee Wanaskar ◽  
Yogesh Bhutada ◽  
Raju Thenge ◽  
Vaibhav Adhao

The aim of present study is to formulate and evaluate extended release matrix tablet of Nateglinide by direct compression method using different polymer like HPMC K4 and HPMC K15. Matrix tablet of nateglidine were prepared in combination with the polymer HPMC K4, HPMC K15, along with the excipients and the formulations were evaluated for tablet properties and in vitro drug release studies. Nateglinide matrix tablet prepared by using polymer such as HPMC K4 and HPMC K15,  it was found that HPMC K15 having higher viscosity as compare to HPMC K4 therefore different concentration of polymer were studied to extend the drug release up to 12 h. The tablets of Nateglinide prepared by direct compression had acceptable physical characteristics and satisfactory drug release. The study demonstrated that as far as the formulations were concerned, the selected polymers proved to have an acceptable flexibility in terms of in-vitro release profile. In present the study the percent drug release for optimize batch was found to 94.62%.  Hence it can be conclude that Nateglinide extended release matrix tablet can prepared by using HPMC. The swollen tablet also maintains its physical integrity during the drug release study Keywords: Tablet, in-vitro drug release, Nateglinide, HPMC


Author(s):  
AMRIN SHAIKH ◽  
PRASHANT BHIDE ◽  
REESHWA NACHINOLKAR

Objective: The aim of the present investigation was to design gels for the topical delivery of celecoxib and evaluate with an aim to increase its penetration through the skin and thereby its flux. Method: The solubility of celecoxib is shown to be increased by preparing solid dispersions (SDs) using carriers such as mannitol, polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG) 6000 and urea by solvent evaporation, fusion, and coevaporation methods. In vitro release profile of all SD was comparatively evaluated and studied against the pure drug. The prepared SD was subjected for percent practical yield, drug content, infrared spectroscopy, differential scanning calorimetry analysis, X-ray diffraction studies, and scanning electron microscopy (SEM) imaging. The celecoxib gel was prepared using hydroxypropyl methyl cellulose (HPMC) and Carbopol containing a permeation enhancer dimethyl sulfoxide (DMSO) at different proportions and evaluated for drug content, pH, viscosity, spreadability, extrudability, stability, and in vitro drug release. Results: Faster dissolution rate was exhibited by SD containing 1:5 ratio of celecoxib: PVP K-30 prepared by coevaporation method. In vitro drug release of celecoxib, gels revealed that formulation with HPMC has higher drug release as compared to Carbopol. Conclusion: The increase in dissolution rate for SD is observed in the following order of PVP K-30>urea>mannitol>PEG 6000. The CPD5 gel containing a SD CP5 and 20% DMSO showed the best in vitro release 74.13% at the end of 6 h.


Author(s):  
Raditya Iswandana ◽  
Kurnia Sari Setio Putri ◽  
Cindy Espreancelly Sandiata ◽  
Sisilia Triani ◽  
Santi Purna Sari ◽  
...  

Objectives Pectin, a natural polysaccharide, can be used as colon targeted drug delivery systems. Ionotropic gelation of pectin in the presence of certain divalent cations, such as calcium ions, protects drugs by producing insoluble hydrogels that can be used as a colon-targeted drug delivery carrier. In this study, calcium pectinate beads containing tetrandrine were made and were evaluated for in-vitro drug release and in-vivo study.Methods: Calcium pectinate beads were prepared by ionic gelation method with varied calcium chloride concentration (5%, 10%, and 15%). The best formula was coated with pH sensitive polymers, i.e. Eudragit L100-55, Eudragit L100, HPMCP (Hydroxypropylmethyl Cellulose Phthalate) HP-55 or CAP (Cellulose Acetate Phthalate).Results: Characterization results showed that the beads produced were quite spherical and have yellow-brownish color. After the coating process, beads were used in in-vitro drug release and targeted test. From in-vitro release study, beads coated with Eudragit L100 10% has shown good colon targeted dosage form with percent cumulative release 57.87%. This result also confirmed with the in-vivo test. Beads which were coated by Eudragit L100 10% could be found in the rat intestine.Conclusion: Formula 1 (5% calcium chloride concentration) was chosen as the best beads characterization. Formula 1C (5% beads coated with 10% Eudragit L100) showed an optimal protection from gastric acid in the in-vitro release study and able to deliver the beads to the intestine in the in-vivo targeted test.


Author(s):  
Naga sai divya K ◽  
T Malyadri ◽  
Ch.saibabu

The purpose of the present study was to develop and optimize the emulgel system for Luliconazole using different types of gelling agents: HPMCK15M, Carbopol 940, and Xanthan Gum. The prepared emulgels were evaluated in terms of appearance, pH, spreadability, viscosity, drug content, and in-vitro drug release. In-vitro release study demonstrated diffusion-controlled release of Luliconazole from formulation up to 12 hours. The drug release profile exhibited zero-order kinetics. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and higher drug release. In the case of all evaluation parameters, carbopol based formulation showed better properties so, as a general conclusion, it was suggested that the Luliconazole emulgel formulation prepared with carbopol (F6) was the formula of choice.


Author(s):  
Sushant Kumar ◽  
Satheesh Madhav N V ◽  
Anurag Verma ◽  
Kamla Pathak

The purpose of this research was to isolate the smart biopolymer from the fruit pulp of Fragaria × ananassa (garden strawberry). We isolated natural fruit pulp to evaluate the potentiality of biopolymer in delivery of nanosized lamotrigine as an antiepileptic drug. Lamotrigine was nanosized by screening its nano-size particle by UV method. The nanosized lamotrigine was used for preparation of bionanoparticles (LF1-LF8) by sonication method. The isolated biopolymer was characterized for DSC, FTIR, NMR, Mass and Zeta particle size analysis. The obtained results confirm its polymeric nature in different analysis. The prepared bionanoparticles showed the release of lamotrigine in sustained manner over 36 hours. The release kinetic study was done by using the BIT-SOFT 1.12 software and T50% and T80%, r2 were calculated. All the formulation showed more than 99.78% drug release. The In-vitro release study of different formulations showed the % drug release from 90.92% to 99.78%. The different formulations were evaluated for the In-vitro release study and release kinetic was studied. The formulation LF5 was found to be the best formulation having T50% of 17 hours and T80% of 29 hours with r2 value of 0.9925. The best formulation LF5 showed up to 90.925% drug release over 36 hours. According to the release kinetic study, the best-fit model was found to be Koresmayer-Peppas and the mechanism of drug release was found to be anomalous transport. The results obtained from different evaluations like percentage entrapment efficiency, particle size, release study, kinetic studies and stability study revealed that isolated biopolymer has good potentiality to form bionanoparticles and it can be safely used as an alternative to synthetic and semisynthetic polymers for the preparation of lamotrigine loaded stable bionanoparticles


Author(s):  
Surendra Singh Saurabh ◽  
Roshan Issarani ◽  
Nagori Bp

Objective: In the present dissertation work, the aim was to prepare self-emulsifying drug delivery systems (SEDDS) of etoricoxib to improve its solubility with a view to enhance its oral bioavailability.Methods: The prepared SEDDS was the concentrate of drug, oil, surfactants, and cosurfactant. The formulation was evaluated for various tests such as solubility, globule size, thermodynamic stability study, pH determination, ease of dispersibility, uniformity index, drug content, in-vitro release study, and in-vitro permeation study.Results: The optimized formulation F6 showed drug release (79.21±2.73%), droplet size (0.546 μm). In vitro drug release of the F6 was highly significant (p<0.05) as compared to the plain drug.Conclusion: All formulations of etoricoxib SEDDS were showed faster dissolution than plain drug (p<0.05), mean bioavailability of etoricoxib increase in respect to the plain drug. The F6 can be further used for the preparation of various solid SEDDS formulations.


2020 ◽  
Vol 11 (2) ◽  
pp. 2549-2557
Author(s):  
Swati Mayur Keny ◽  
Ketan Shah

Gemifloxacin Mesylate is a fluoroquinolone antibacterial drug preferably used in the treatment of bacterial conjunctivitis. The addition of Loteprednol Etabonate enhances the anti-inflammatory activity of the developed formulation. The objective of the present work was to develop ocular inserts of Gemifloxacin Mesylate with Loteprednol Etabonate and thereby evaluate its potential as a sustained ocular delivery system. Poor bioavailability and poor therapeutic responses are associated with conventional ophthalmic solutions due to many pre-corneal constraints. These constrain trigger the researcher's mind to formulate a controlled and sustained drug delivery system. Ocular inserts based on the solvent cast technique were formulated and characterized by in vitro drug release studies using a flow-through apparatus that simulated the eye conditions. Compatibility of Gemifloxacin Mesylate, Loteprednol Etabonate, polymer, and excipients was checked based on preformulation studies. Different combinations of Gemifloxacin Mesylate, Loteprednol Etabonate, Carbopol 974, 98 981, PEG 400, and glycerine were formulated by the solvent cast method and evaluated. Clarity, smoothness, surface pH, drug content, and in-vitro drug release study were the various parameters evaluated on the formulated ocusert. Formula GLE 74 fulfilled the needs of all organoleptic parameters and also the in-vitro release study. Based on in vitro correlation stability studies, it was concluded that this ocular inserts formulation could be a promising controlled release formulation.


Author(s):  
Pamula Reddy Bhavanam ◽  
Shaik Abdul Rahaman ◽  
M Mohan Varma

Tamarind seed polysaccharide (TSP) micro sized mouth dissolving films were prepared to release the Amlodipine besylate drug for hypertension. TSP mouth dissolving films were prepared by solvent evaporation method which was further examined under in vitro studies. In vitro antimicrobial activities for all the mouth dissolving films were conducted by diffusion method. Form the in vitro release profile, the AML-TSP was completely showed rapid release of drug up to 98.1% than the thin films of other formulations respectively in the period of time of 10 min. The prepared AML-TSP mouth dissolving films were evaluated for drug content, weight variation, thickness, pH, folding endurance, In vitro drug release and stability studies. AML8 showed the highest drug release at the 10 min time point. The AML8 mouth dissolving film with higher amount of superdisintegrant CCS and SSG showed fastest onset of drug release.


Author(s):  
Chinmaya Keshari Sahoo ◽  
Amiyakanta Mishra ◽  
Amaresh Prusty ◽  
S. Ram Mohan Rao ◽  
Jimidi Bhaskar

The present study was undertaken to develop floating tablets of lamivudine. The tablets were prepared by direct compression method. The prepared tablets were evaluated for pre compression parameters, post compression parameters, in vitro drug release study and in vitro buoyancy study. Among the prepared formulations F4 batch show 90.98% drug release in 12 h. The in vitro release kinetics were analyzed for different batches by different pharmacokinetic models such as zero order, first order, Higuchi, and Korsmeyer Peppas. The result of optimized formulation releases drug up to 12 h in a controlled manner and follows Higuchi kinetics. Short term stability study at 40±2ºC/75±5% RH for three months on the best formulation was performed showing no significant changes in thickness, hardness, friability, drug content and in vitro drug release.


Sign in / Sign up

Export Citation Format

Share Document